Announcements (Tue. Oct. 1)

- Homework #2 due Thursday
 - Gradiance Problem 2.6 due next Tuesday
- Dead as a Mutton Again: Journalism's Modernity Problem
 - Derek Willis, The New York Times, next Monday
- Midterm next Thursday, in class
 - Open-book, open-notes
 - Sample midterm (from last year) posted on Sakai
 - Sample solution will be posted later

A motivating example

- Example: find Bart’s ancestors
- "Ancestor" has a recursive definition
 - X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor
Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
    ```sql
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 - But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in PostgreSQL (common table expressions)

Ancestor query in SQL3

```sql
WITH RECURSIVE Ancestor(anc, desc) AS
  (SELECT parent, child FROM Parent
   UNION
   SELECT a1.anc, a2.desc
   FROM Ancestor a1, Ancestor a2
   WHERE a1.desc = a2.anc)
  SELECT anc
  FROM Ancestor
  WHERE desc = 'Bart';
```

Fixed point of a function

- If \(f: T \to T \) is a function from a type \(T \) to itself, a fixed point of \(f \) is a value \(x \) such that \(f(x) = x \)
- Example: What is the fixed point of \(f(x) = x/2 \)?
 - 0, because \(f(0) = 0/2 = 0 \)
- To compute a fixed point of \(f \)
 - Start with a "seed": \(x_0 \in T \)
 - Compute \(f(x) \)
 - \(f(f(x)) = x \) if \(x \) is fixed point of \(f \)
 - Otherwise, \(x \leftarrow f(x) \), repeat
- Example: compute the fixed point of \(f(x) = x/2 \)
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0
- Doesn’t always work, but happens to work for us!
Fixed point of a query

- A query \(q \) is just a function that maps an input table to an output table, so a fixed point of \(q \) is a table \(T \) such that \(q(T) = T \)
- To compute fixed point of \(q \)
 - Start with an empty table: \(T \leftarrow \emptyset \)
 - Evaluate \(q \) over \(T \)
 - If the result is identical to \(T \), stop; \(T \) is a fixed point
 - Otherwise, let \(T \) be the new result; repeat

Finding ancestors

WITH RECURSIVE Ancestor(anc, desc) AS
 (SELECT parent, child FROM Parent)
UNION
 (SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)

Think of it as \(\text{Ancestor} = q(\text{Ancestor}) \)

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven
Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself
- Non-linear:
  ```sql
  WITH RECURSIVE Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   (SELECT a1.anc, a2.desc
    FROM Ancestor a1, Ancestor a2
    WHERE a1.desc = a2.anc))
  ```
- Linear:
  ```sql
  WITH RECURSIVE Ancestor(anc, desc) AS
  ((SELECT parent, child FROM Parent)
   UNION
   ...)
  ```

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated `Ancestor` rows with `Parent`
 - For non-linear recursion, need to join newly generated `Ancestor` rows with all existing `Ancestor` rows
- Non-linear recursion may take fewer steps to converge, but perform more work
 - Example: `a → b → c → d → e`
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps
 - More work: e.g., `a → d` has two different derivations

Mutual recursion example

- Table `Natural (n)` contains 1, 2, ..., 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an odd number
- ```sql
 WITH RECURSIVE Even(n) AS
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Odd)),
 RECURSIVE Odd(n) AS
 ((SELECT n FROM Natural WHERE n = 1)
 UNION
 (SELECT n FROM Natural
 WHERE n = ANY(SELECT n+1 FROM Even)))
  ```
Operational semantics of WITH

- WITH RECURSIVE $R_1$ AS $Q_1$, $R_2$ AS $Q_2$, ..., $R_n$ AS $Q_n$:

  - $Q_1$, ..., $Q_n$ may refer to $R_1$, ..., $R_n$
  - Operational semantics:
    1. $R_i \leftarrow \emptyset$, $R_n \leftarrow \emptyset$
    2. Evaluate $Q_1$, ..., $Q_n$ using the current contents of $R_1$, ..., $R_n$.
    - $R_i^\text{new} \leftarrow Q_1$, $R_n^\text{new} \leftarrow Q_n$
    3. If $R_i^\text{new} \neq R_i$ for any $i$
      - $R_i \leftarrow R_i^\text{new}$
      - Go to 2.
    4. Compute $Q$ using the current contents of $R_1$, ..., $R_n$ and output the result.

Computing mutual recursion

WITH RECURSIVE Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd))
RECURSIVE Odd(n) AS
(SELECT n FROM Natural WHERE n = 1
UNION
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even))

- Even = $\emptyset$, Odd = $\emptyset$
- Even = $\emptyset$, Odd = $\{1\}$
- Even = $\{2\}$, Odd = $\{1, 3\}$
- Even = $\{2, 4\}$, Odd = $\{1, 3\}$
- Even = $\{2, 4\}$, Odd = $\{1, 3, 5\}$
- ...

Fixed points are not unique

WITH RECURSIVE Ancestor(anc, desc) AS
(SELECT parent, child FROM Parent)
UNION
(SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc)

- There may be many other fixed points
- But if $q$ is monotone, then all these fixed points must contain the fixed point we computed from fixed-point iteration starting with $\emptyset$
- Thus the unique minimal fixed point is the “natural” answer to the query

Note that the bogus tuple reinforces itself!
Mixing negation with recursion

- If $q$ is non-monotone
  - The fixed-point iteration may flip-flop and never converge
  - There could be multiple minimal fixed points—we wouldn’t know which one to pick as answer!
- Example: reward students with GPA higher than 3.9
  - Those not on the Dean’s List should get a scholarship
  - Those without scholarships should be on the Dean’s List

WITH RECURSIVE Scholarship(SID) AS
  (SELECT SID FROM Student WHERE GPA > 3.9
   AND SID NOT IN (SELECT SID FROM DeansList)),
RECURSIVE DeansList(SID) AS
  (SELECT SID FROM Student WHERE GPA > 3.9
   AND SID NOT IN (SELECT SID FROM Scholarship))

Fixed-point iteration does not converge

WITH RECURSIVE Scholarship(SID) AS
  (SELECT SID FROM Student WHERE GPA > 3.9
   AND SID NOT IN (SELECT SID FROM DeansList)),
RECURSIVE DeansList(SID) AS
  (SELECT SID FROM Student WHERE GPA > 3.9
   AND SID NOT IN (SELECT SID FROM Scholarship))

Multiple minimal fixed points

WITH RECURSIVE Scholarship(SID) AS
  (SELECT SID FROM Student WHERE GPA > 3.9
   AND SID NOT IN (SELECT SID FROM DeansList)),
RECURSIVE DeansList(SID) AS
  (SELECT SID FROM Student WHERE GPA > 3.9
   AND SID NOT IN (SELECT SID FROM Scholarship))
Legal mix of negation and recursion

- Construct a dependency graph
  - One node for each table defined in WITH
  - A directed edge $R \rightarrow S$ if $R$ is defined in terms of $S$
  - Label the directed edge “−” if the query defining $R$ is not monotone with respect to $S$
- Legal SQL3 recursion: no cycle containing a “−” edge
- Called stratified negation
- Bad mix: a cycle with at least one edge labeled “−”

![Dependency Graph]

Stratified negation example

- Find pairs of persons with no common ancestors

```sql
WITH RECURSIVE Ancestor(anc, desc) AS
 ((SELECT parent, child FROM Parent) UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc)),
Person(person) AS
 ((SELECT parent FROM Parent) UNION
 (SELECT child FROM Parent)),
NoCommonAnc(person1, person2) AS
 ((SELECT p1.person, p2.person
 FROM Person p1, Person p2
 WHERE p1.person <> p2.person)
 EXCEPT
 (SELECT a1.desc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.anc = a2.anc))
SELECT * FROM NoCommonAnc;
```

Evaluating stratified negation

- The stratum of a node $R$ is the maximum number of “−” edges on any path from $R$ in the dependency graph
  - $Ancestor$: stratum 0
  - $Person$: stratum 0
  - $NoCommonAnc$: stratum 1
- Evaluation strategy
  - Compute tables lowest-stratum first
  - For each stratum, use fixed-point iteration on all nodes in that stratum
    - Stratum 0: $Ancestor$ and $Person$
    - Stratum 1: $NoCommonAnc$
- Intuitively, there is no negation within each stratum
Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation):
  - unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from ∅
- Mixing negation and recursion is tricky
  - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
  - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)