Amortization is an analysis technique that can influence the design of algorithms in a profound way. Later, we will see a few data structures that owe their existence to the insights gained in their performance due to amortized analysis. One is the Fibonacci heap, which is a priority queue, the other is the splay tree, which is a dictionary.

Binary Counting. We illustrate the idea of amortization by analyzing the cost of counting in binary. Think of an integer as a linear array of bits, \(n = \sum_{i \geq 0} A[i] \cdot 2^i \). The following loop keeps incrementing the integer stored in \(A \).

```
loop i = 0;
  while A[i] = 1 do A[i] = 0; i++ endwhile;
forever.
```

We define the cost of counting as the total number of bit changes that are needed to increment the number one by one. What is the cost to count from 0 to \(n \)? Figure 53 shows that counting from 0 to 16 requires 31 bit changes. Since \(n \) takes only \(\lceil \log_2 (n + 1) \rceil \) bits or positions in \(A \), a single increment does at most \(\log_2 (n + 1) \) steps. This implies that the cost of counting from 0 to \(n \) is at most \(n \log_2 (n + 1) \). Even though the upper bound of \(\log_2 (n + 1) \) is tight for the worst single step, we can show that the total cost is much less than \(n \log_2 (n + 1) \). We do this with two slightly different amortization methods referred to as aggregation and accounting.

Cost Analysis. The aggregation method takes a global view of the problem. The pattern in Figure 53 suggests we define \(b_i \) equal to the number of 1s and \(t_i \) equal to the number of trailing 1s in the binary notation of \(i \). Assuming \(n = 2^k \), we have exactly \(j \) trailing 1s for \(n/2^{j+1} \) integers between 0 and \(n - 1 \). The total number of bit changes is therefore

\[
T(n) = \sum_{i=0}^{n-1} (t_i + 1)
\]

\[
= n \cdot \sum_{j=0}^{k-1} \frac{j + 1}{2^{j+1}}.
\]

We proved earlier that the sum on the right is less than 2, hence the cost is \(T(n) < 2n \). The amortized cost per operation is \(T(n)/n < 2 \).

The idea of the accounting method is to charge each operation what we think its amortized cost is. If the amortized cost exceeds the actual cost, then the surplus remains as a credit associated with the data structure. If the amortized cost is less than the actual cost, the accumulated credit is used to pay for the cost overflow. Define the amortized cost of 0 \(\rightarrow 1 \) as $2 and that of 1 \(\rightarrow 0 \) as $0. When we change 0 to 1 we pay \$1 for the actual expense of performing the operation and \$1 stays with the bit, which is now 1. This \$1 pays for the (later) cost of changing the 1 to 0. Each increment has amortized cost \$2, and together with the \$s in the system, this is enough to pay for all the bit changes. The cost is therefore at most \(2n \).

We see how a little trick, like making the 0 \(\rightarrow 1 \) changes pay for the 1 \(\rightarrow 0 \) changes, leads to a very simple analysis that is just as accurate as the one obtained by aggregation.
Potential Functions. We can further formalize the amortized analysis by using a potential function. The idea is similar to accounting, except there is no explicit credit saved anywhere. The accumulated credit is an expression of the well-being or potential of the data structure. Let \(c_i \) be the actual cost of the \(i \)-th operation and \(D_i \) the data structure after the \(i \)-th operation. Let \(\Phi_i = \Phi(D_i) \) be the potential of \(D_i \), which is some numerical value depending on the concrete application. Then we define \(a_i = c_i + \Phi_i - \Phi_{i-1} \) as the amortized cost of the \(i \)-th operation. The sum of amortized costs of \(n \) operations is

\[
\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (c_i + \Phi_i - \Phi_{i-1}) = \sum_{i=1}^{n} c_i + \Phi_n - \Phi_0.
\]

We aim at choosing the potential such that \(\Phi_0 = 0 \) and \(\Phi_n \geq 0 \) because then we get \(\sum a_i \geq \sum c_i \). In words, the sum of amortized costs covers the sum of actual costs. To apply the method to binary counting we define the potential equal to the number of 1’s in the binary notation, \(\Phi_i = b_i \). It follows that \(\Phi_i - \Phi_{i-1} = b_i - b_{i-1} \). The actual cost of the \(i \)-th operation is \(c_i = 1 + t_{i-1} \), and the amortized cost is \(a_i = c_i + \Phi_i - \Phi_{i-1} = 2 \). We have \(\Phi_0 = 0 \) and \(\Phi_n \geq 0 \), as desired, and therefore \(\sum c_i \leq \sum a_i = 2n \), which is consistent with the analysis of binary counting with the aggregation and the accounting methods.

2-3-4 Trees. As a more complicated application of amortized analysis, we consider 2-3-4 trees and the cost of restructuring them under insertions and deletions. We have seen 2-3-4 trees earlier, in the section on red-black trees. A set of keys is stored in the internal nodes of a 2-3-4 tree, which is characterized by the following three properties:

1. each internal node has \(2 \leq d \leq 4 \) children and stores \(d - 1 \) keys;
2. all leaves have the same depth;
3. the keys are sorted.

As for binary trees, being sorted means that the inorder sequence of the keys is sorted. The only meaningful definition of the inorder sequence is the inorder sequence of the first subtree followed by the first key stored in the root followed by the inorder sequence of the second subtree followed by the second key, etc.

Insertion. To insert a new key, we attach a new leaf and add the key to the parent \(\nu \) of that leaf. All is fine unless \(\nu \) overflows because it now has five children. If it does, we repair the violation of Property 1 by climbing the tree one node at a time. We call an internal node non-saturated if it has fewer than four children.

Case 1. \(\nu \) has five children and a non-saturated sibling to its left or right. Move one child from \(\nu \) to that sibling, as illustrated in Figure 54.

![Figure 54: The overflowing node gives one child to a non-saturated sibling.](image)

Case 2. \(\nu \) has five children and no non-saturated sibling. Split \(\nu \) into two nodes and recurse for the parent of \(\nu \), as illustrated in Figure 55. If \(\nu \) has no parent then create a new root whose only children are the two nodes obtained from \(\nu \).

![Figure 55: The overflowing node is split into two and the parent is treated recursively.](image)

Deletion. Removing a key is done in a similar fashion, although there we have to cope with nodes \(\nu \) that have too few children rather than too many. Let \(\nu \) have only one child. We repair Property 1 by adopting a child from a sibling or by merging \(\nu \) with a sibling. In the latter case the parent of \(\nu \) loses a child and needs to be visited recursively.

Case 1. \(\nu \) has only one child and a sibling with more than two children. Move one child from the sibling to \(\nu \), as illustrated in Figure 56.

![Figure 56: The overflowing node is split into two and the parent is treated recursively.](image)
Case 2. \(\nu \) has only one child and no sibling with more than two children. If \(\nu \) has no sibling at all then remove \(\nu \) and declare its single child as the new root. Otherwise, merge \(\nu \) with a sibling and recurse for the parent, as illustrated in Figure 57.

Figure 56: The underflowing node receives one child from a sibling.

Figure 57: The underflowing node is merged with a sibling and the parent is treated recursively.

Amortized Analysis. The worst case for inserting a new key occurs when all internal are saturated. The insertion then triggers logarithmically many split operations. Symmetrically, the worst case for a deletion occurs when all internal nodes have only two children. The deletion then triggers logarithmically merge operations. Nevertheless, we can show that in the amortized sense, there are at most a constant number of split and merge operations per insertion and deletion.

We use the accounting method and store money in the internal nodes. The best internal nodes have three children because then they are flexible in both directions. They require no money, but all other nodes are given a positive amount to pay for future expenses caused by split and merge operations. Specifically, we store $4, $1, $0, $3, $6 in each internal node with 1, 2, 3, 4, 5 children. As illustrated in Figures 54 and 56, an adoption moves money only from \(\nu \) to its sibling. The operation keeps the total amount the same or decreases it, which is even better. In any case, there is only one adoption per insertion or deletion. As shown in Figure 55, a split operation frees up $5 from \(\nu \) and spends at most $3 on the parent. The extra $2 pay for the split operation. Similarly, a merge operation frees $5 from the two affected nodes and spends at most $3 on the parent. This is illustrated in Figure 57.

In other words, split and merge operations pay for themselves as they release money from the 2-3-4 tree. An insertion makes an initial investment of at most $3 to pay for creating a new leaf. Similarly, a deletion makes an initial investment of at most $3 for destroying a leaf. This implies that for \(n \) insertions and deletions, we get at most \(\frac{3n}{2} \) split and merge operations. In other words, the amortized number of split and merge operations is at most \(\frac{3}{2} \). Recalling that there is a one-to-one correspondence between 2-3-4 tree and red-black trees. We can thus translate the above update rules and get an algorithm for red-black trees with an amortized constant restructuring cost per insertion and deletion. We already proved that for red-black trees, the number of rotations per insertion and deletion is at most a constant. The above argument implies that also the number of promotions and demotions is at most a constant, although in the amortized and not in the worst-case sense, as for the rotations.