1. Consider the change making problem where we would like to make change for \(n \) cents using the fewest number of coins. Suppose we have \(k \) coins, each worth \(d_1, d_2, \ldots, d_k \) cents. (30 points)

- Describe a greedy method that works for the case when our coins are the familiar, American denominations; i.e., 1 cent, 5 cents, 10 cents, and 25 cents. Prove that this method is optimal.
- Now suppose that our denominations are less familiar. For example, suppose we have coins worth 1 cent, 10 cents, 14 cents, and 23 cents, and our \(n \) is 28. Does the same method work? Why or why not?
- Describe a dynamic program that can solve the problem in \(O(nk) \) time for any denominations. Prove that your dynamic program is optimal.

2. Given two strings, \(C_1 \) and \(C_2 \), we wish to compute the number of times that \(C_1 \) appears as a subsequence of \(C_2 \). For example, if \(C_1 = 'ab' \) and \(C_2 = 'aacccb' \), \(C_1 \) appears in as two distinct subsequences of \(C_2 \) (one in 'aacccb' and the other 'acccb'). Explain how we can use a Dynamic Program similar to the one we used to compute the Longest Common Subsequence to solve this problem. (20 points)

3. Describe how we can implement a queue using two stacks with both Enqueue and Dequeue operating in \(O(1) \) amortized time. (20 points)

4. CLRS Problem 17-2 (30 points)