Read Chapter 11 in Linz.

Definition: A language L is *recursively enumerable* if there exists a TM M such that $L = L(M)$.

Definition: A language L is *recursive* if there exists a TM M such that $L = L(M)$ and M halts on every $w \in \Sigma^+$.

Enumeration procedure for recursive languages

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, $L = L(M)$.
- Construct 2-tape TM M'
 - Tape 1 will enumerate the strings in Σ^+
 - Tape 2 will enumerate the strings in L.
 - On tape 1 generate the next string v in Σ^+
 - simulate M on v
 - if M accepts v, then write v on tape 2.
Enumeration procedure for recursively enumerable languages

To enumerate all $w \in \Sigma^+$ in a recursively enumerable language L:

Repeat forever

- Generate next string (Suppose k strings have been generated: $w_1, w_2, ..., w_k$)
- Run M for one step on w_k
 Run M for two steps on w_{k-1}.
 ...
 Run M for k steps on w_1.
If any of the strings are accepted then write them to tape 2.

Theorem Let S be an infinite countable set. Its powerset 2^S is not countable.

Proof - Diagonalization

- S is countable, so it’s elements can be enumerated.
 $S = \{s_1, s_2, s_3, s_4, s_5, s_6 \ldots \}$
 An element $t \in 2^S$ can be represented by a sequence of 0’s and 1’s such that the ith position in t is 1
 if s_i is in t, 0 if s_i is not in t.
 Example, $\{s_2, s_3, s_5\}$ represented by
 Example, set containing every other element from S, starting with s_1 is $\{s_1, s_3, s_5, s_7, \ldots \}$ represented by
 Suppose 2^S countable. Then we can enumerate all its elements: t_1, t_2, \ldots.

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
<th>s_6</th>
<th>s_7</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>t_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>t_7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^*.
 The set of all languages over Σ is

<table>
<thead>
<tr>
<th>$L(M_1)$</th>
<th>a</th>
<th>aa</th>
<th>aaa</th>
<th>aaaa</th>
<th>aaaaa</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.

Proof:

- Let $\Sigma = \{a\}$
 Enumerate all TM’s over Σ:
The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \overline{L} are both RE, then L is recursive.

Proof:

- There exists an M_1 such that M_1 can enumerate all elements in L.
- There exists an M_2 such that M_2 can enumerate all elements in \overline{L}.
- To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \overline{L} is recursive.

Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L.
- Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:
Definition A grammar \(G = (V, T, S, P) \) is *unrestricted* if all productions are of the form

\[
u \rightarrow v\]

where \(u \in (V \cup T)^+ \) and \(v \in (V \cup T)^* \)

Example:

Let \(G = (\{S, A, X\}, \{a, b\}, S, P) \), \(P = \)

\[
\begin{align*}
S & \rightarrow bAaaX \\
bAa & \rightarrow abA \\
AX & \rightarrow \lambda
\end{align*}
\]

Example Find an unrestricted grammar \(G \) s.t. \(L(G) = \{a^n b^n c^n | n > 0\} \)

\(G = (V, T, S, P) \)

\(V = \{S, A, B, D, E, X\} \)

\(T = \{a, b, c\} \)

\(P = \)

\[
\begin{align*}
1) \ S & \rightarrow AX \\
2) \ A & \rightarrow aAbc \\
3) \ A & \rightarrow aBbc \\
4) \ Bb & \rightarrow bB \\
5) \ Bc & \rightarrow D \\
6) \ Dc & \rightarrow cD \\
7) \ Db & \rightarrow bD \\
8) \ DX & \rightarrow EXc
\end{align*}
\]

There are some rules missing in the grammar.

To derive string aaabbbccc, use productions 1, 2 and 3 to generate a string that has the correct number of a’s b’s and c’s. The a’s will all be together, but the b’s and c’s will be intertwined.

\[
S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbbcbcX \Rightarrow aaaBbcbcbcX
\]
Theorem If G is an unrestricted grammar, then $L(G)$ is recursively enumerable.

Proof:

- List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that $L=L(G)$.

Proof:

- L is recursively enumerable.
 \[\Rightarrow \text{there exists a TM } M \text{ such that } L(M)=L. \]
 \[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \]
 \[q_0 w \xrightarrow{*} x_1 q_f x_2 \text{ for some } q_f \in F, x_1, x_2 \in \Gamma^* \]
 Construct an unrestricted grammar G s.t. $L(G)=L(M)$.

$S \Rightarrow w$

Three steps

1. $S \Rightarrow B \ldots B \# x_q y B \ldots B$
 with $x,y \in \Gamma^*$ for every possible combination

2. $B \ldots B \# x_q y B \ldots B \Rightarrow B \ldots B \# q_0 w B \ldots B$

3. $B \ldots B \# q_0 w B \ldots B \Rightarrow w$
Definition A grammar G is *context-sensitive* if all productions are of the form

$$x \rightarrow y$$

where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$.

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $L=L(G)$ or $L=L(G) \cup \{\lambda\}$.

Theorem For every CSL L not including λ, \exists an LBA M s.t. $L=L(M)$.

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M)=L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.