Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines

1. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - Run M2

2. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - If x is current symbol
 - then Run M2
3. Given Turing Machines M1, M2, and M3

Notation for

- Run M1
- If x is current symbol
 - then Run M2
 - else Run M3

More Notation for Simplifying Turing Machines

Suppose \(\Gamma = \{a, b, c, B\} \)

- \(z \) is any symbol in \(\Gamma \)
- \(x \) is a specific symbol from \(\Gamma \)

1. \(s \) - start
2. \(R \) - move right
3. **L** - move left

4. **x** - write x (and don’t move)

5. **Ra** - move right until you see an **a**

6. **La** - move left until you see an **a**

7. **R¬a** - move right until you see anything that is not an **a**

8. **L¬a** - move left until you see anything that is not an **a**

9. **h** - halt in a final state

10. \[a, b \rightarrow w \]

If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string $w \in \Sigma^+, \Sigma = \{a, b\}$.

If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?
Example

Assume input string $w \in \Sigma^+, \Sigma = \{a, b\}, |w| > 0$

For each a in the string, append a b to the end of the string.

input: $abbabb$, output: $abbabbb$

The tape head should finish pointing at the leftmost symbol of w.

Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function $f:D \rightarrow \mathbb{R}$ is a TM M, which given input $d \in D$, halts with answer $f(d) \in \mathbb{R}$.

Example: $f(x + y) = x + y$, x and y unary numbers.

\[
\begin{array}{c}
\text{start with:} & 111+1111 \\
& \uparrow \\
\text{end with:} & 1111111 \\
& \uparrow
\end{array}
\]
Example: Copy a String, \(f(w) = w0w, \ w \in \Sigma^*, \ \Sigma = \{a, b, c\} \)

Denoted by \(C \)

- start with: \(abac \)
- end with: \(abac0abac \)

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol

\[
\text{Algorithm:}
\]

\[
\text{\begin{array}{c}
\text{s} & \text{R} & 0 & \text{L} & \text{R} & \{a, b, c\} \\
\text{B} & \text{B} & \text{w} & \text{B} & \text{R} & \text{w} & \text{L} & \text{w} \\
\end{array}}
\]

- make a copy of the symbol

\[
\text{Algorithm:}
\]

\[
\text{\begin{array}{c}
\text{s} & \text{R} & 0 & \text{L} & \text{R} & \{a, b, c\} \\
\text{B} & \text{B} & \text{w} & \text{B} & \text{R} & \text{w} & \text{L} & \text{w} \\
\end{array}}
\]

- make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

![Diagram of tape head movement](image)

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba

\uparrow

end with: bacaBBba

\uparrow

(similar to S_R)
Example: Add unary numbers

This time use shift.

Example: Multiply two unary numbers, $f(x\cdot y)=x\cdot y$, x and y unary numbers. Assume $x,y>0$.

```
start with:     1111*11
               ↑

dend with:     11111111
               ↑
```