Section: Finite Automata

Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × Σ → Q
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = \]

Tabular Format

\[
\begin{array}{c|cc}
& 0 & 1 \\
\hline
q_0 & q_1 & q_1 \\
\end{array}
\]

Example of a move: \(\delta(q_0, 1) = \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q∈F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 1 0 0
 q0
 q1

2) 1 0 0
 q0
 q1

3) 1 0 0
 q0
 q1

4) 1 0 0
 q0
 q1
Definition:

\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition: The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally, \(L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \)
Trap State

Example: $L(M) = \{b^n a \mid n > 0\}$
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Example:

\[L = \{ w \in \Sigma^* \mid w \text{ has an even number of } a\text{'s and an even number of } b\text{'s} \} \]
Definition A language is regular iff there exists DFA M s.t. $L=L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = $(Q, \Sigma, \delta, q_0, F)$

where

- Q is finite set of states
- Σ is tape (input) alphabet
- q_0 is initial state
- $F \subseteq Q$ is set of final states.

$\delta : Q \times (\Sigma \cup \{ \lambda \}) \rightarrow 2^Q$
Example

Note: In this example $\delta(q_0, a) = L =$
Example

\(L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\} \)
Definition \(q_j \in \delta^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example From previous example:

\[
\delta^*(q_0, ab) = \\
\delta^*(q_0, aba) =
\]

Definition: For an NFA \(M \),
\[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \} \]
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA \(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\[Q_D = \]

\[F_D = \]

\[\delta_D : \]
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$

 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$

 (c) Add state B if it doesn’t exist

 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Minimizing Number of states in DFA

Why?

Algorithm

• Identify states that are indistinguishable
 These states form a new state

Definition Two states \(p \) and \(q \) are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states \(p \) and \(q \) are distinguishable if \(\exists w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR } \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example:
Properties and Proving - Problem 1
Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Consider the property Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).