Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:
Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms

Definition of TM

- **Storage**
 - tape

- **actions**
 - write symbol
 - read symbol
 - move left (L) or right (R)

- **computation**
 - initial configuration
 * start state
 * tape head on leftmost tape square
 * input string followed by blanks
 - processing computation
 * move tape head left or right
 * read from and write to tape
 - computation halts
 * final state

Formal Definition of TM

A TM M is defined by $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ where

- **Q** is finite set of states
- **\(\Sigma\)** is input alphabet
- **\(\Gamma\)** is tape alphabet
- **\(B\in\Gamma\)** is blank
- **\(q_0\)** is start state
- **\(F\)** is set of final states
- **\(\delta\)** is transition function

$\delta(q,a) = (p,b,R)$ means “if in state q with the tape head pointing to an ’a’, then move into state p, write a ’b’ on the tape and move to the right”.
TM as Language recognizer

Definition: Configuration is denoted by \vdash.

If $\delta(q,a) = (p,b,R)$ then a move is denoted

\[
abaqabba \vdash ababpbba
\]

Definition: Let M be a TM, $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$. $L(M) = \{w \in \Sigma^* | q_0 w^* \vdash x_1 q_f x_2 \text{ for some } q_f \in F, x_1, x_2 \in \Gamma^*\}$

TM as language acceptor

M is a TM, w is in Σ^*,

- if $w \in L(M)$ then M halts in final state
- if $w \notin L(M)$ then either
 - M halts in non-final state
 - M doesn’t halt

Example

$\Sigma = \{a, b\}$

Replace every second ‘a’ by a ‘b’ if string is even length.

- Algorithm
Example:

\[L = \{ a^n b^n c^n | n \geq 1 \} \]

Is the following TM Correct?

TM as a transducer

TM can implement a function: \(f(w) = w' \)

- start with: \(w \)
 \[\uparrow \]
- end with: \(w' \)
 \[\uparrow \]
Definition: A function with domain D is *Turing-computable* or *computable* if there exists TM $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ such that

$$q_0w \vdash^* q_f f(w)$$

$q_f \in F$, for all $w \in D$.

Example:

$f(x) = 2x$

x is a unary number

Start with: 111

↑

End with: 111111

↑

Is the following TM correct?
Example:

$L = \{ww \mid w \in \Sigma^+\}, \Sigma = \{a, b\}$