CPS 270
Advanced Search and CSPs
Ron Parr

Memory-bounded Search: Why?

• We run out of memory before we run out of time
• Problem: Need to remember entire search horizon
• Solution: Remember only a partial search horizon
• Issue: Maintaining optimality, completeness
• Issue: How to minimize time penalty
• Details: Not emphasized in class, but worth a skim so that you are aware of the issues

Searching with Partial Information

• Multiple state problems
 – Several possible initial states
• Contingency problems
 – Several possible outcomes for each action
• Exploration problems
 – Outcomes of actions not known a priori, must be discovered by trying them

Example

• Initial state may not be detectable
 – Suppose sensors for a nuclear reactor fail
 – Need safe shutdown sequence despite ignorance of some aspects of state
• This complicates search enormously
• In the worst case, contingent solution could cover the entire state space
State Sets

- Idea:
 - Maintain a set of candidate states
 - Each search node represents a set of states
 - Can be hard to manage if state sets get large
- If states have probabilistic outcomes, we maintain a probability distribution over states

Searching in Unknown Environments

- What if we don’t know the consequences of actions before we try them?
- Often called on-line search
- Goal: Minimize competitive ratio
 - Actual distance/distance traveled if model known
 - Problematic if actions are irreversible
 - Problematic if links can have unbounded cost

Checking for Solution Existence

- In some problems, we don’t care about a path, but about a configuration that has a desired property
- Instead of a goal, we have a target, which can be a set of states that satisfy some property
- We call the set of properties that legal solutions must obey constraints
- We call these problems constraint satisfaction problems (CSPs)

CSP Examples

- Satisfying curriculum/major requirements
- Sudoku
- Seating arrangements at a party
- LSAT Questions:
 http://www.lsac.org/ID/pdfs/SamplePTJune.pdf
CSPs

- Specifying CSPs
- One view: Search with special goal criteria
- CSP definition (general):
 - Variables X_1, \ldots, X_n
 - Variable X_i has domain D_i
 - Constraints C_1, \ldots, C_m
 - Solution: Each variable gets a value from its domain such that no constraints violated
- CSP examples...
 - http://www.csplib.org/

Example Contd.

- Variables: $\{WA, NT, Q, SA, NSW, V, T\}$
- Domains: $\{R, G, B\}$
- Constraints:
 - For WA – NT: $\{(R, G), (R, B), (G, B), (G, R), (B, R), (B, G)\}$
- We have a table for each adjacent pair
- Are our constraints binary?
- Can every CSP be viewed as a graph problem?
CSPs as Search

Backtracking

- Backtracking is the most obvious (and widely used) method for solving CSPs:
 - Search forward by assigning values to variables
 - If stuck, undo the most recent assignment and try again
 - Repeat until success or all combinations tried
 - (Can you formulate this using the terminology of search algorithms from the previous lecture?)

- Embellishments
 - Methods for picking next variable to assign (e.g. most constrained)
 - Backjumping

Digression: NP-Hardness

- NP hardness is not an AI topic
- You will not be tested on it explicitly, but

- It’s important for all computer scientists
- Understanding it will deepen your understanding of AI (and other CS) topics
- You will be expected to understand its relevance and use for AI problems

- Eat your vegetables; they’re good for you

P and NP

- P and NP are about decision problems
- P is set of problems that can be solved in polynomial time
- NP is a superset of P
- NP is the set of problems that:
 - Have solutions which can be verified in polynomial time or, equivalently,
 - can be solved by a non-deterministic Turing machine in polynomial time (OK if you don’t know what that means yet)

- Roughly speaking:
 - Problems in P are tractable – can be solved in a reasonable amount of time, and Moore’s law helps
 - Some problems in NP might not be tractable
Isn’t P big?

• P includes $O(n)$, $O(n^2)$, $O(n^{10})$, $O(n^{100})$, etc.
• Clearly $O(n^{10})$ isn’t something to be excited about – not practical

• Computer scientists are very clever at making things that are in P efficient

• First algorithms for some problems are often quite expensive, e.g., $O(n^3)$, but research often brings this down

NP-hardness

• Many problems in AI are NP-hard (or worse)
• What does this mean?
• NP-hard = as hard as hardest problems in NP
• Identifying a problem as NP hard means:
 – You probably shouldn’t waste time trying to find a polynomial time solution
 – If you find a polynomial time solution, either
 • You have a bug
 • Find a place on your shelf for your Turing award
• NP hardness is a major triumph (and failure) for computer science theory

NP-hardness

• Why it is a failure:
 – There is a huge class of problems with no known efficient solutions
 – We have failed, as a community, to either find efficient solutions or prove that none exist

• Why it is a triumph:
 – We have a developed a precise language for talking about these problems
 – We have developed sophisticated ways to reason about and categorize the problems we don’t know how to solve efficiently
Understanding the class NP

- A class of *decision problems* (Yes/No)
- Solutions can be verified in polynomial time
- Examples:
 - Graph coloring:
 - Sortedness: [1 2 3 4 5 8 7]

What is NP hardness?

- An NP hard problem is at least has hard as the hardest problems in NP
- The hardest problems in NP are *NP-complete*
- Demonstrate hardness via *reduction*
 - Use one problem to solve another
 - A is reduced to B, if we can use B to solve A:

 ![Reduction Diagram](image)

 poly time A solver if B is poly time

Hardness vs. Completeness

- For something to be *NP-complete*, must be in NP
- If something is *NP-hard*, it *could be even harder* than the hardest problems in NP
- Proving completeness is stronger theoretical result – says more about the problem

P=NP?

- *Biggest open question in CS*
- Can NP-complete problems be solved in poly time?
- Probably not, but nobody has been able to prove it yet
- Many false starts, e.g.:
How challenging is “P=NP?”

- Princeton University CS department
- See: http://www.cs.princeton.edu/general/bricks.php
- Photo from: http://stuckinthebubble.blogspot.com/2009/07/three-interesting-points-on-princeton.html

NP-Completeness of CSPs

- Are CSPs in NP?
- Are they NP-hard?
- Graph coloring is known to be NP-complete
 - Can solve graph coloring using a CSP solver
 - Therefore CSPs are NP-hard
 - Since CSPs are in NP, CSPs are therefore NP-complete

Dealing with NP-hard problems

- If there is little hope of having a generally efficient solver, what do we do?
- Even if worst case requires exponential time, not all problems will
 - Identify classes of problems that might be easier than the general case
 - Develop algorithms that work well most of the time
 - Refine understanding of problems and algorithms so that we can avoid expensive computations more predictably and reliably
 - Lather, rinse, repeat

Optimization

- As with CSPs, solution is more important than path, but
- Some solutions are better than others
- Interested in minimizing or maximizing some function of the problem state
 - Find a protein with a desirable property
 - Optimize circuit layout
- History of search steps not worth the trouble
Goal: Find values of problem features that maximize objective function.

Note: This is conceptual. Often this function is not smooth.

Limitations of Hill Climbing

- Local maxima
- Ridges – direction of ascent is at 45 degree angle to any of the local changes
- Plateaux – flat expanses

Getting Unstuck

- Random restarts
- Simulated annealing (maximization)
 - Take downhill moves with small probability
 - Probability of moving downhill decreases with
 - Number of iterations
 - Steepness of downhill move
 - If system is “cooled” slowly enough, will find global optimal w.p. 1
 - Motivated by the annealing of metals and glass
GeneAlgorithms

• GAs are hot in some circles
• Biological metaphors to motivate search
• Organism is a word from a finite alphabet (organisms = states)
• Fitness of organism measures its performance on task (fitness = objective)
• Uses multiple organisms (parallel search)
• Uses mutation (random steps)

Crossover

Crossover is a distinguishing feature of GAs:
Randomly select organisms for “reproduction” in accordance with their fitness. More “fit” individuals are more likely to reproduce.

Reproduction is sexual and involves crossover:

Organism 1: \[110010010\]
Organism 2: \[000101110\]
Offspring: \[110011110\]

Is this a good idea?

• Has worked well in some examples
• Can be very brittle
 – Representations must be carefully engineered
 – Sensitive to mutation rate
 – Sensitive to details of crossover mechanism
• For the same amount of work, stochastic variants of hill climbing often do better
• Hard to analyze; needs more rigorous study

Continuous Spaces

• In continuous spaces, we don’t need to “probe” to find the values of local changes

• If we have a closed-form expression for our objective function, we can use the calculus

• Suppose objective function is: \(f(x_1, y_1, x_2, y_2, x_3, y_3)\)

• Gradient tells us direction and steepness of change
\[\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}\right)\]
Following the Gradient

\[x = (x_1, y_1, x_2, y_2, x_3, y_3) \]

\[x \leftarrow x + \alpha \nabla f(x) \]

For sufficiently small step sizes, this will converge to a local optimum.

If gradient is hard to compute:
- Compute empirical gradient
- Compare with classical hill climbing

Search Conclusions

- Search = most general purpose technique in existence
- Everything can be formulated as a search problem, from sorting to curing cancer
- Search techniques have been specialized to match different types of problems

- Be a smart consumer of search:
 - Specifying your problem clearly
 - Find the technique that matches your problem