Decision Trees

CPS 170
Ron Parr

Decision Trees

• Decision trees try to construct small, consistent hypotheses
• Suppose our concept is “blue cube”

Facts About Decision Trees

• If the concept has d conjuncts, there will be a decision tree for this concept with depth d
• Decision trees are very bad for some functions:
 – Parity function
 – Majority function
• For errorless data, you can always construct a decision tree that correctly labels every element of the training set, but the number of nodes may be exponential in the number of variables.

Decision Tree Algorithms

• Aim for:
 – Small decision trees
 – Robustness to misclassification
• Constructing the shortest decision tree is intractable
• Standard approaches are greedy
• Classical approach is to split tree using an information-theoretic criterion

Growing Decision Trees

Initialize: one root node with all training instances
Repeat until no good leaves
 Pick leaf
 Split = choose_variable(variables – all_parents(leaf))
 For val in domain(split)
 new_leaf = new_leaf(split=val)
 new_leaf.instances = leaf.instances s.t. split = val
 For leaf in tree
 classification(leaf) = majority_classification(leaf)

Information Theory

• Roughly speaking, information theory measures the expected number of bits needed to communicate information from one person to another
• Suppose person 1 is flipping a coin with bias p
• Person 1 wants to tell person 2 the sequence of results
• What is the expected number of bits person 1 will send to person 2?
• Note relation to compression
Information Content

\[I(p_1, \ldots, p_n) = E(\#\text{bits}) = \sum_{i=1}^{n} - p_i \log_2(p_i) \]

For an unbiased coin, the information content is 1.
For a totally biased coin, the information content is 0.

Information Content of a Leaf

\[I(p, n) = -\frac{p}{p+n} \log_2(p) - \frac{n}{p+n} \log_2(n) \]

Information gain of a split:

\[I(p, n) - \sum_{i=1}^{m} \frac{p_i + n_i}{p+n} I(p_i, n_i) \]

Gain Example

• Suppose we have seen:
 – Red tetrahedron (f), Blue sphere (T), Blue cone (T), green cone (f)
• Is it better to split on shape or color?
• Information of original set is: 1
• Information gain of splitting on cone:
• Information gain of splitting on blue:

Favoring Small Examples

• Information gain (and other splitting criteria)
 – Are greedy
 – Favor small trees
• This makes representation an issue yet again
• Suppose you want to learn “parity(+) and blue”
• Hard to learn with decision trees, but
 – If we treat parity like a state variable, then it’s easy
 – Call these derived variables features or attributes

Decision Tree Conclusion

• Simple method
• Works surprisingly well in many cases
• Issues:
 – Continuous variables
 – Missing values
 – Expressive power