HMMs

CPS 170
Ronald Parr

Overview

• Bayes nets are (mostly) atemporal
• Need a way to talk about a world that changes over time
• Necessary for planning
• Many important applications
 – Target tracking
 – Patient/factory monitoring
 – Speech recognition

Back to Atomic Events

• We began talking about probabilities from the perspective of atomic events
• An atomic event is an assignment to every random variable in the domain
• For n random variables, there are 2^n possible atomic events
• State variables return later (briefly)

States

• When reasoning about time, we often call atomic events states
• States, like atomic events, form a mutually exclusive and jointly exhaustive partition of the space of possible events
• We can describe how a system behaves with a state-transition diagram

State Transition Diagram

P(S2|S1)=0.75
P(S1|S1)=0.25
P(S2|S2)=0.50
P(S1|S2)=0.50

Don’t confuse states with state variables!

Don’t confuse states with state variables!

Don’t confuse states with state variables!

State Transition Diagrams

• Make a lot of assumptions
 – Transition probabilities don’t change over time (stationarity)
 – The event space does not change over time
 – Probability distribution over next states depends only on the current state (Markov assumption)
 – Time moves in uniform, discrete increments
The Markov Assumption

- Let S_t be a random variable for the state at time t
- $P(S_j|S_i, S_{i-1}, \ldots, S_0) = P(S_j|S_{i-1})$
- (Use subscripts for time; S_0 is different from S_0)
- Markov is special kind of conditional independence
- Future is independent of past given current state

Markov Models

- A system with states that obey the Markov assumption is called a Markov Model
- A sequence of states resulting from such a model is called a Markov Chain
- The mathematical properties of Markov chains are studied heavily in mathematics, statistics, computer science, electrical engineering, etc.

What's The Big Deal?

- A system that obeys the Markov property can be described succinctly with a transition matrix, where the i,jth entry of the matrix is $P(S_j|S_i)$
- The Markov property ensures that we can maintain this succinct description over a potentially infinite time sequence
- Properties of the system can be analyzed in terms of properties of the transition matrix
 - Steady-state probabilities
 - Convergence rate, etc.

Observations

- Introduce E_t for the observation at time t
- Observations are like evidence
- Define the probability distribution over observations as function of current state: $P(E|S)$
- Assume observations are conditionally independent of other variables given current state
- Assume observation probabilities are stationary

A Graphical Model

Note: These are random variables, not states!

Applications

- Monitoring/Filtering
 - S is the current status of the patient/factory
 - E is the current measurement
- Prediction
 - S is the current/future position of an object
 - E are our past observations
 - Project S into the future
Applications

• Smoothing/hindsight
 – Update view of the past based upon future
 – Diagnosis: Factory exploded at time t=20, what happened at t=5 to cause this?

• Most likely explanation
 – What is the most likely sequence of events (from start to finish) to explain what we have seen?

Monitoring/Prediction

We want: $P(S_t | e_t \ldots e_0)$

By variable elimination:

$$P(S_t | e_t \ldots e_0) = \frac{P(B | AC) P(A | C)}{P(B | C)}$$

How to think about this: The C is like “extra” evidence. This forces us into one corner of the event space. Given that we are in this corner, everything behaves the same.
Monitoring

We want: \(P(S_t | e_{t-1} \ldots e_0) \)

\[
P(S_t | e_{t-1} \ldots e_0) = \frac{P(e_t | S_t, e_{t-1} \ldots e_0) P(S_t | e_{t-1} \ldots e_0)}{P(e_t | e_{t-1} \ldots e_0)}
\]

\[= \alpha P(e_t | S_t, e_{t-1} \ldots e_0) P(S_t | e_{t-1} \ldots e_0)
\]

\[= \alpha P(e_t | S_t) P(S_t | e_{t-1} \ldots e_0)
\]

\[= \alpha P(e_t | S_t) \sum_{S_{t-1}} P(S_{t-1} | e_{t-1} \ldots e_0) P(S_t | e_{t-1} \ldots e_0)
\]

Recursive

Example

- \(W = \) employee is working
- \(R = \) employee has produced results
- boss observed whether employee has produced results
- Must infer whether employee is working given observations

\[
P(W_{r+1} | W_r) = 0.8
\]

\[
P(W_{r+1} | \overline{W_r}) = 0.3
\]

\[
P(R | W) = 0.6
\]

\[
P(R | \overline{W}) = 0.2
\]

Problem

Assume employee starts work in a productive (working) state. boss has observed two consecutive months without results. What is probability that employee was working in the second month?

Let's Do The Math

\[
P(W_{r+1} | W_r) = 0.8
\]

\[
P(W_{r+1} | \overline{W_r}) = 0.3
\]

\[
P(R | W) = 0.6
\]

\[
P(R | \overline{W}) = 0.2
\]

\[
P(W_2 | W_1) = \alpha_1 P(W_2 | W_1) \sum_{W_1} P(W_1 | W_1) P(W_1 | \tau_1)
\]

\[
P(W_2 | \tau_1) = \alpha_1 P(W_2 | \tau_1) \sum_{W_1} P(W_1 | \tau_1) P(W_1 | \tau_1)
\]

\[
P(W_1 | \tau_1) = \alpha_2 0.4(0.8*1.0 + 0.3*0.0) = \alpha_2 0.32
\]

\[
P(W_1 | \tau_1) = \alpha_2 0.8(0.2*1.0 + 0.7*0.0) = \alpha_2 0.16
\]

\[
P(W_1 | \tau_1) = 0.67, P(\tau_1 | \tau_1) = 0.33
\]

More Math

\[
P(W_2 | W_1) \overline{W_2} = \alpha_1 P(W_2 | W_1) \sum_{W_1} P(W_1 | W_1) P(W_1 | \tau_1)
\]

\[
P(W_2 | \tau_1) = \alpha_1 P(W_2 | \tau_1) \sum_{W_1} P(W_1 | \tau_1) P(W_1 | \tau_1)
\]

\[
P(W_2 | \tau_1) = \alpha_2 0.4(0.8*0.67 + 0.3*0.33) = \alpha_2 0.25
\]

\[
P(W_1 | \tau_1) = \alpha_2 0.8(0.2*0.67 + 0.7*0.33) = \alpha_2 0.292
\]

\[
P(W_2 | \tau_1) = 0.46, P(\tau_2 | \tau_1) = 0.54
\]

Hindsight

\[
P(S_1 | e_{t-1} \ldots e_0) = \alpha P(e_{t-1} \ldots e_0 | S_1, e_{t-1} \ldots e_0) P(S_1 | e_{t-1} \ldots e_0)
\]

\[
= \alpha P(e_{t-1} \ldots e_0 | S_1) \sum_{S_1} P(S_1 | e_{t-1} \ldots e_0) P(S_1 | e_{t-1} \ldots e_0)
\]

\[
= \sum_{S_1} P(e_{t-1} \ldots e_0 | S_1) P(S_1 | e_{t-1} \ldots e_0)
\]

\[
= \sum_{S_1} P(e_{t-1} \ldots e_0 | S_1) P(S_1 | e_{t-1} \ldots e_0) P(S_1 | S_1) P(S_1 | e_{t-1} \ldots e_0)
\]

Recursive
Hindsight Summary

- **Forward:** Compute k state distribution given
 - Forward distribution up to k
 - Observations up to k
 - Equivalent to eliminating variables < k
- **Backward:** Compute conditional evidence distribution after k
 - Work backward from t to k
 - Equivalent to eliminating variables > k
- Smoothed state distribution is proportional to product of forward and backward components

Let's Do More Math

\[
\begin{align*}
P(W_1 | W_2) &= 0.8 \\
P(W_1 | \overline{W_2}) &= 0.3 \\
P(R | W) &= 0.6 \\
P(\overline{R} | \overline{W}) &= 0.2 \\
P(W_1 | T_1) &= 0.67 \\
P(\overline{W_1} | T_1) &= 0.33 \\
P(W_i | T_1) &= \alpha P(W_i | T_1) P(T_1 | W_i) \\
P(T_1 | W_j) &= \sum_{W_i} P(T_1 | W_j) P(W_i | W_j) \\
P(T_1 | \overline{W}) &= (0.4 * 0.8 + 0.8 * 0.2) = 0.48 \\
P(\overline{T_1} | \overline{W}) &= (0.4 * 0.3 + 0.8 * 0.7) = 0.68 \\
P(W_1 | T_1) &= \alpha 0.33 * 0.48 = 0.1584 \\
P(\overline{W_1} | \overline{T_1}) &= \alpha 0.67 * 0.68 = 0.4556 \\
P(W_i | T_1) &= 0.258, P(\overline{W} | T_1) = 0.742
\end{align*}
\]

Problem II

Can we revise our estimate of the probability that the employee worked at step 1?

We initially thought:

\[P(W_1 | T_1) = 0.67, P(\overline{W_1} | T_1) = 0.33\]

Since the employee didn’t have results at time 2, is it now less likely that he was working at time 1?

What Happened?

- After one observation, we initially think it is somewhat less likely that the employee is working. However, not all working employees have results all of the time.
- After two observations, we conclude that the employee was much less likely to have been working in the first time step.
- Moral: Never go two meetings without having some results for your boss.

Checkpoint

- **Done:** Forward Monitoring and Backward Smoothing
- Monitoring is recursive from the past to the present
- Backward smoothing requires two recursive passes
- Called the forward-backward algorithm
 - Independently discovered many times throughout history
 - Was classified for many years by US Govt.
- Equivalent to doing variable elimination!

What's Left?

- We have seen that filtering and smoothing can be done efficiently, so what’s the catch?
- We’re still working at the level of atomic events
- There are too many atomic events!
- We need a generalization of Bayes nets to let us think about the world at the level of state variables and not states
Dynamic Bayes Nets

Time → \(t \) → \(t+1 \)

X → **X’**
Y → **Y’**
Z → **Z’**

<table>
<thead>
<tr>
<th>CPT</th>
<th>(P(Z’^+))</th>
<th>(P(Z’))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y,Z_t)</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>(Y,Z_t)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(Y,Z_t)</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>(Y,Z_t)</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Harsh Reality

- While BN inference in the static case was a very nice story, there are essentially no tractable, exact algorithms for DBNs.
- Active research area:
 - Approximate inference algorithms
 - Sampling methods

Continuous Variables

- How do we represent a probability distribution over a continuous variable?
 - Probability density function
 - Summations become integrals
- Very messy except for some special cases:
 - Distribution over variable X at time \(t+1 \) is a multivariate normal with a mean that is a linear function of the variables at the previous time step
 - This is a linear-Gaussian model

Inference in Linear Gaussian Models

- Filtering and smoothing integrals have closed form solution
- Elegant solution known as the Kalman filter
 - Used for tracking projectiles (radar)
 - State is modeled as a set of linear equations
 - \(S=vt \)
 - \(V=at \)
 - What about pilot controls?

Inference in Hybrid Networks

- Hybrid networks combine discrete and continuous variables
- Usually (but not always) a combination of discrete and Gaussian variables
- Active area of research:
 - Inference recently proven to be NP hard even for simple chains (Lerner & Parr 2001)
 - Many new approximate inference algorithms developed each year

Working With DBNs

Can we do variable elimination for DBNs?
Related Topics

- **Continuous time**
 - Need to model system using differential equations
- **Non-stationarity**
 - What if the model changes over time?
 - This touches on learning
- **What about controlling the system w/actions?**
 - Markov decision processes

HMM Conclusion

- Elegant algorithms for temporal reasoning over discrete atomic events, Gaussian continuous variables (many practical systems are such)
- Exact Bayes net methods don’t generalize well to state variable representation in the temporal case: little hope for exponential savings
- Approximate inference for large systems is an active area of research