Learning Intro
CPS 170
Ron Parr

Why Study Learning?
• Considered a hallmark of intelligence
• Viewed as way to reduce programming burden
• Many algorithms assume parameters that are difficult to determine exactly a priori

Formalizing Learning
• Learning Element
 – Changes due to information or stimuli
• Performance Element
 – Objective measure of change
• Learning is simply an increase in the ability of the learning element over time to achieve the task specified by the performance element

Types of Learning
• Inductive Learning
 – Acquiring new information that previously was not available
 – Learning concepts
• Speedup learning
 – Learning to do something you already “know” faster or better

Feedback in Learning
• Supervised Learning
 – Given examples of correct behavior
• Unsupervised Learning
 – No external notion of what is correct
 – Is this well-defined?
• Reinforcement Learning
 – Indirect indication of effectiveness

Learning Methodology
• Distinction between training and testing is crucial
• Correct performance on training set is just memorization!
• Researcher should never look at the test data
• Raises some troubling issues for “benchmark” learning problems
Computational Learning Theory

- Formal study of what can be learned from data
- Need to make some assumptions:
 - Training examples must be representative
 - Algorithm needn’t always work, but should scale well
 - Number of training samples or run time needed should have polynomial relationship to inverse probability of error and percentage of misclassifications
- Probably Approximately Correct (PAC) learning
- Goal: Algorithms that have a low error rate with high probability

COLT

- Learning theory is elegant and mathematically rich. However,
 - It sometimes isn’t constructive
 - It sometimes tells us how many data are needed, but not how to manipulate the data efficiently
- Until recently, learning theory has been disconnected from practical learning algorithms
- New advances are leading to a rapprochement
 - Support vector machines
 - Boosting

Supervised Learning

- Classical framework
- Target concept, e.g., green
- Learner is presented with labeled instances
 - True: Green cones, green cubes, green spheres
 - False: Red cones, red cubes, red spheres, blue cones, blue cubes, blue spheres
- Learner must correctly identify the target concept from the training data

Performance Measure

- Training set won’t have all possible objects
- Test set will contain novel objects
 - Blue cylinders, yellow tetrahedra
- To learn successfully, learner must have good performance even when confronted with novel objects
 - This is what we would expect from people
 - A blue dinosaur is still blue

Examples

- Distinguish healthy/diseased tissue
- Predict good/bad credit risks
- Drilling sites likely to have oil
- Document categorization
- Predict failures in physical systems
- Predict if mushrooms are safe to eat
- Good/bad moves in a game
- Public database of learning problems:

Why Learning Is Tricky

- Suppose we have seen:
 - Red tetrahedron (f), Blue sphere (T), Blue cone (T), green cube (f)
- Possible concepts:
 - Blue
 - (Blue Sphere) or (Blue Cone)
 - Objects a prime number from start
 - Objects with a circular cross-section
- What if some data are mislabeled?
Learning and Representation

- Learning is very sensitive to representation
- Every learning algorithm can be viewed as a search procedure through a space of concepts
- Space of concepts determines
 - Difficulty of task
 - Appropriate algorithm
 - Restricting too aggressively can trivialize problem
- Space: Conjunctions of colors and shapes
 - Eliminates primes and (possibly) cross sections