Why Study Learning?

• Considered a hallmark of intelligence

• Viewed as way to reduce programming burden

• Many algorithms assume parameters that are difficult to determine exactly a priori
Examples

- SPAM classification
- Computational Biology/medicine
 - Distinguish healthy/diseased tissue (e.g., skin/colon cancer)
 - Find structure in biological data (regulatory pathways)
- Financial events
 - Predict good/bad credit risks
 - Predict price changes
 - Response to marketing
- Drilling sites likely to have oil
- Document categorization
- Learn to play games
- Learn to control systems
 - Fly Helicopter
 - Optimize OS components
- Public database of learning problems:

Who Does Machine Learning?

- In AI
 - Core AI topic (AAAI, IJCAI)
 - Specialized communities (ICML, NIPS)
- Databases (data mining - KDD)
- Used in (CS):
 - Vision
 - Systems
 - Comp. Bio
- Statistics
Who Does Machine Learning (@Duke)

- CS:
 - Faculty: Pankaj Agarwal, Vince Conitzer, Alex Hartemink, Kamesh Munagala, Ron Parr, Carlo Tomasi, Jun Yang
- ISDS (everybody, but especially):
 - Scott Schmidler, Sayan Mukherjee
- IGSP:
 - Terry Furey, Uwe Ohler
- Engineering:
 - Larry Carin, Silvia Ferrari, Rebecca Willett

Who Hires in Machine Learning?

- Universities
- Microsoft Research
- Search: Google/Yahoo/Amazon
- Defense contractors
- Some financial institutions (quietly)
- Many startups

- ML viewed as good background for many other tasks (robotics, vision, systems, engineering)
What is Machine Learning

• Learning Element
 – The thing that learns

• Performance Element
 – Objective measure of progress

• Learning is simply an increase in the ability of the learning element over time to achieve the task specified by the performance element

ML vs. Statistics?

• Machine learning is:
 – Younger
 – More empirical
 – More algorithmic
 – (arguably) More practical
 – (arguably) More decision theoretic

• Statistics is:
 – More mature
 – (arguably) More formal and rigorous
ML vs. Data Mining

- Machine Learning is:
 - (Arguably) more formal
 - (Arguably) more task driven/decision theoretic

- Data Mining is:
 - More constrained by size of data set
 - More closely tied to database techniques

Types of Learning

- Inductive Learning
 - Acquiring new information that previously was not available
 - Learning concepts

- Speedup learning
 - Learning to do something you already “know” faster or better
Feedback in Learning

- **Supervised Learning**
 - Given examples of correct behavior
 - Example input: Labeled x-rays
 - Example use: Cancer diagnosis

- **Unsupervised Learning**
 - No external notion of what is correct
 - Example: Unlabeled x-rays
 - Example use: Clustering of tumors based on appearance

- **Reinforcement Learning**
 - Indirect indication of effectiveness
 - Example use: Learning to ride a bike

Learning Methodology

- Distinction between training and testing is crucial

- Correct performance on training set is just memorization!

- Researcher should *never* look at the test data (but in practice always does)

- Raises some troubling issues for “benchmark” learning problems
Computational Learning Theory

- Formal study of what can be learned from data
- Closely related to ML, but also to CS theory

- Assumptions:
 - Training examples must be representative
 - Algorithm needn’t *always* work, but should scale well

- Goals:
 - Algorithms that have a low error rate with high probability
 - Good characterization of how performance scales

COLT

- Learning theory is elegant and mathematically rich. However,
 - It sometimes isn’t constructive
 - It sometimes tells us how many data are needed, but not how to manipulate the data efficiently

- Through the late 90’s, learning theory drifted away from practical learning algorithms

- New advances fresh thinking have led to a rapprochement, e.g.:
 - Support vector machines
 - Boosting
Example: Supervised Learning

- Classical framework
- Target concept, e.g., green
- Learner is presented with labeled instances
 - True: Green cones, green cubes, green spheres
 - False: Red cones, red cubes, red spheres, blue cones, blue cubes, blue spheres
- Learner must correctly identify the target concept from the training data

Performance Measure

- Training set won’t have all possible objects
- Test set will contain novel objects
 - Blue cylinders, yellow tetrahedra
- To learn successfully, learner must have good performance when confronted w/novel objects
 - This is what we would expect from people
 - A blue Broccolisaurus is still blue
Why Learning Is Tricky

• Suppose we have seen:
 – Red tetrahedron(f), Blue sphere(t), Blue cone (t), green cube(f)
• Possible concepts:
 – Blue
 – (Blue Sphere) or (Blue Cone)
 – Objects a prime number from start
 – Objects with a circular cross-section
• What if some data are mislabeled?

Learning and Representation

• Learning is very sensitive to representation

• Every learning algorithm can be viewed as a search through a space of concepts

• Space of concepts determines
 – Difficulty of task
 – Appropriate algorithm
 – Restricting too aggressively can trivialize problem
 – Failure to restrict (or regularize) can trivialize the problem

• Example Space: Conjunctions of colors and shapes
 – Eliminates primes and (possibly) cross sections
Management of the Hypothesis Space

• Ockham’s Razor:
 – All things being equal, favor the simplest consistent hypothesis
 – Guiding principle of science, e.g., Einstein:
 "In my opinion the theory here is the logically simplest relativistic field theory that is at all possible. But this does not mean that nature might not obey a more complex theory. More complex theories have frequently been proposed... In my view, such more complicated systems and their combinations should be considered only if there exist physical-empirical reasons to do so."

• Ockham’s razor is not provably correct, but
 – Computational learning theory shows us that the more choices we have, the more data we need to distinguish reliably among these choices
 – Well known trade off between bias and variance
 • How many points do you need to fit a degree 2 polynomial?
 • How many points do you need to fit a degree 100 polynomial?

• Ockham’s razor is embodied in a wide range of methods

Learning Intro Final Thoughts

• Machine learning is one of the most successful areas of AI
 – Many practical applications
 – Many ways to succeed without solving the “whole problem”
 – Many fields view machine learning as a special sauce that will give them an advantage

• Machine learning conferences are almost as large as the general AI conferences