Model Learning and Clustering

CPS170
Ron Parr

material from: Lise Getoor, Andrew Moore, Tom Dietterich, Sebastian Thrun, Rich Maclin

Unsupervised Learning

• Supervised learning: Data <x1, x2, ... xn, y>
• Unsupervised Learning: Data <x1, x2, ... xn>

• So, what’s the big deal?
• Isn’t y just another feature?
• No explicit performance objective
 − Bad news: Problem not necessarily well defined without further assumptions
 − Good news: Results can be useful for more than predicting y
Model Learning

- Produce a global summary of the data
- Not an exact copy
- Consider space of models M and dataset D
- One approach: Maximize $P(M|D)$
- How to do this? Bayes Rule:

\[
P(M|D) = \frac{P(D|M)P(M)}{P(D)}
\]

Example: Modeling Coin Flips

- Suppose we have observed: $D=HTTHT$
- Which is a better model?
 - $P(H=0.4)$
 - $P(H=0.5)$

\[
P(M|D) = \frac{P(D|M)P(M)}{P(D)}
\]

- $P(D|(P(H = 0.5)) = 0.5^5 = 0.312$
- $P(D|(P(H = 0.4)) = 0.4^2 \times 0.6^3 = 0.3456$

What about $P(D)$ and $P(M)$???
Model Learning With Bayes Rule

\[P(M \mid D) = \frac{P(D \mid M)P(M)}{P(D)} \]

- We call \(P(D \mid M) \) the *likelihood*
- We can ignore \(P(D) \)... Why?
- What about \(P(M) \)?
 - Call this a our *prior probability* on models
 - If \(P(M) \) is uniform (all models equally likely) then maximizing \(P(D \mid M) \) is equivalent to maximizing \(P(M \mid D) \)
 (Call this the *maximum likelihood* approach.)

Using Priors

- Suppose we have good reason to expect that the coin is fair
- Should we really conclude \(P(H)=0.4 \)?
- Suppose we think \(P(P(H=0.5)) = 2 \times P(P(H=0.4)) \)
- This means \(P(D \mid P(H=0.4)) \) must be 2X larger than \(P(D \mid P(H=0.5)) \) to compensate if \(P(H=0.4) \) is to maximize the *posterior probability*

\[P(M \mid D) = \frac{P(D \mid M)P(M)}{P(D)} \]
Specifying Priors

- In our coin example, we considered just two models $P(H=0.4)$ and $P(H=0.5)$
- In general, we might want to specify a distribution over all possible coin probabilities

- This introduces complications:
 - $P(M)$ is now a distribution over a continuous parameter
 - Need to use calculus to find maximizer of $P(D|M)P(M)$
Clustering as Modeling

- Clustering assigns points in a space to clusters
- Example: By examining x-rays of cancer tumors, one might identify different subtypes of cancer based upon growth patterns
- Each cluster has its own probabilistic model describing how items of that cluster’s type behave

Examples of Clustering Applications

- **Marketing:** Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- **Land use:** Identification of areas of similar land use in an earth observation database
- **Insurance:** Identifying groups of motor insurance policy holders with similar claim cost
- **City-planning:** Identifying groups of houses according to their house type, value, and geographical location
- **Earthquake studies:** Observed earthquake epicenters should be clustered along continent faults
Example of Subtleties in Clustering

- Household Dataset:
 location, income, number of children, rent/own, crime rate, number of cars

- Appropriate clustering may depend on use:
 - Goal to minimize delivery time ⇒ cluster by location
 - Others?
 - Clustering work often suffers from mismatch between the clustering objective function and the performance criterion

Clustering Desiderata

- Decomposition or partition of data into groups so that
 - Points in one group are similar to each other
 - Are as different as possible from the points in other groups
- Measure of distance is fundamental
- Explicit representation:
 - $D(x(i),x(j))$ for each x
 - Only feasible for small domains
- Implicit representation by measurement:
 - Distance computed from features
 - Implement this as a function
Families of Clustering Algorithms

- **Partition-based methods**
 - e.g., K-means
- **Hierarchical clustering**
 - e.g., hierarchical agglomerative clustering
- **Probabilistic model-based clustering**
 - e.g., mixture models
- **Graph-based Methods**
 - e.g., spectral methods

K-means

- Start with randomly chosen cluster centers
- Assign points to closest cluster
- Recompute cluster centers
- Reassign points
- Repeat until no changes
K-means example

K-means example
K-means example
K-means example #2

Demo

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
Complexity

- Does algorithm terminate?
 yes
- Does algorithm converge to optimal clustering?
 Can only guarantee local optimum
- Time complexity one iteration?
 \(nk \)

Understanding k-Means

- Implicitly models data as coming from a Gaussian distribution centered at cluster centers
- \(\log P(\text{data}) \sim \text{sum of squared distances} \)

\[
P(x_i \in c_j) \propto e^{-\|x_i - c_j\|^2}
\]

\[
P(\text{data}) = \prod_i P(x_i \in c_{\text{clustering}(i)})
\]

\[
\log(P(\text{data})) = \alpha \sum_i (x_i - c_{\text{clustering}(i)})^2
\]
Understanding k-Means II

- Each step of k-Means increases $P(\text{data})$
 - Reassigning points moves points to clusters for which their coordinates have higher probability
 - Recomputing means moves cluster centers to increase the average probability of points in the cluster

- Fixed number of assignments and monotonic score implies convergence

Understanding k-Means III

$$P(M \mid D) = \frac{P(D \mid M)P(M)}{P(D)}$$

- Can view k-means as max likelihood method with a twist
 - Unlike the coin toss example, there is a hidden variable with each datum – the cluster membership
 - k-means iteratively improves its guesses about these hidden pieces of information

- k-means can be interpreted as an instance of a general approach to dealing with hidden variables called Expectation Maximization (EM)
But How Do We Pick k?

- Sometimes there will be an obvious choice given background knowledge or the intended use of the clustering output
- What if we just iterated over k?
 - Picking $k=n$ will always maximize $P(D|M)$
 - We could introduce a prior over models using $P(M)$ in Bayes rule

- Compare prior over models with regularization:
 - Regularization in regression penalized overly complex solutions
 - We can assign models with a high number of clusters low probability to achieve a similar effect
 - (In general, use of priors subsumes regularization.)

Model Learning Conclusion

- Often seek to find the most likely model given the data
- Can be viewed as maximizing the posterior $P(M|D)$ using Bayes rule
- Model learning can be applied to:
 - Coin flips
 - Clustering
 - Learning parameters of Bayes nets or HMMs
 - etc.
- Some care must go into formulation of modeling assumptions to avoid degenerate solutions, e.g., assigning every point to its own cluster
- Priors can help avoid degenerate solutions