Constraint Satisfaction Problems (CSPs)

CPS 170
Ron Parr

CSPs

• What is a CSP?
• One view: Search with special goal criteria
• CSP definition (general):
 – Variables X_1, \ldots, X_n
 – Variable X_i has domain D_i
 – Constraints C_1, \ldots, C_m
 – Solution: Each variable gets a value from its domain such that no constraints violated
• CSP examples...
 – http://www.csplib.org/
Other CSP Examples

- Satisfying curriculum/major requirements
- Sudoku
- Seating arrangements at a party
- LSAT Questions: http://www.lsac.org/JD/pdfs/SamplePTJune.pdf

A Restricted View

- Variables X_1, \ldots, X_n
- A binary constraint, lists permitted assignments to pairs of variables
- A binary constraint between binary variables is a table of size 4, listing legal assignments for all 4 combinations.
- A k-ary constraint lists legal assignments to k variables at a time.
- How large is a k-ary constraint for binary variables?

Note: More expressive languages are often used.
Problem: Assign Red, Green and Blue so that no 2 adjacent regions have the same color. (3-coloring)

Example Contd.

- Variables: \{WA, NT, Q, SA, NSW, V, T\}
- Domains: \{R,G,B\}
- Constraints:
 - For WA – NT:\{(R,G), (R,B), (G,B), (G,R), (B,R), (B,G)\}
- We have a table for each adjacent pair
- Are our constraints binary?
- Can every CSP be viewed as a graph problem?
Enumerate all legal combinations of WA and SA (ignoring other regions)

Nodes: Partial Assignments
Actions: Make Assignments
Backtracking

- Backtracking is the most obvious (and widely used) method for solving CSPs:
 - Search forward by assigning values to variables
 - If stuck, undo the most recent assignment and try again
 - Repeat until success or all combinations tried
- Embellishments
 - Methods for picking next variable to assign (e.g. most constrained)
 - Backjumping

NP-Completeness of CSPs

- Are CSPs in NP?
- Are they NP-hard?

- CSPs and graph coloring are equivalent
 - Convert any graph coloring problem to CSP
 - Convert any CSP to graph coloring
- Known: Graph coloring is NP-complete
- CSPs are NP-complete
- End of the story or just the beginning?
Issues

• What are good heuristics?
 – N.B.: Here we use the term “heuristic” to refer to a procedure for selecting next variables, not an h(x) function as in A*
 – Often good to think of this as a local search
 – Focus on choosing actions carefully, instead of pruning nodes carefully (as in A* or alpha-beta)

• Can we develop heuristics that apply to the entire class of problems, not just specific instances?
• What’s the best we can hope for?

Constraint Graphs

• Constraint graphs are important because they capture the structural relationships between the variables

• IMPORTANT CONCEPT:
 Not all instances of a hard problem class are hard
 – Structural features give insight into hardness
 – Example: Planar graphs are known to be 4-colorable
 – Group problems within class by structural features
 – New measure of problem complexity
Node Consistency

- Check all nodes to verify that set of possible values is non-empty
- How can a set become empty?
- Constraint propagation:
 - After assigning R to WA, we can remove R from the set of legal assignments to SA
 - Constraint propagation w/node consistency checking can discover bad choices quickly

Arc Consistency

- Check all arcs for inconsistencies
- For each value at the start, there must exist a consistent value at the terminus
- Catches many inconsistencies
- Can use to iteratively reduce number of possible assignments to each variable
 (constraint propagation)
K-Consistency

- k-consistency
 - Consider sets of k variables
 - For each legal setting of a k-1 subset
 - Check for legal setting for the kth variable

- Checks for more distant influences

- 1-consistency = node consistency
- 2 consistency = arc consistency

Is this 3-consistent? (assume we’ve done constraint propagation)

Facts About Arc Consistency

- Strong k-consistency: Consistent for all i<k
- What if a graph with n variables is strongly n-consistent?

 Solution exists!

- What is the worst-case cost of checking n-consistency?

 $O(2^n)$
Linear Constraint Structures

\[X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6\]

Are these easy or hard?

Suppose our chain is arc consistent...

Properties of Chains

Theorem: Arc consistent linear constraint graphs are strongly n consistent.

Proof: Induction on n.

Base: Arc consistent chains of length 1 are consistent.

I.H. Arc consistent chains of length i are strongly i consistent

I.S. Extending an i step arc-consistent chain by 1 new arc consistent link produces an i+1 link strongly i+1 consistent chain.

Proof of I.S.: Since the last link is strongly arc-consistent, any choice for variable i ensures a consistent choice for 0...i. Newly added node is consistent. No other variables participate in constraints for i+1.
Properties of Trees

Theorem: Arc consistent constraint trees are strongly n consistent.

Proof: Same as chain case...

Corollary: Hardness of CSPs with constraint trees

Cool fact: We now have a graph-based test for separating out some of the hard problems from the easy ones.

Variable Elimination

Domain(NT,SA) = {(blue, green), (blue, red), (green, blue), (green, red), (red, blue), (red, green)}
Eliminate Q

Domain(NT, SA, NSW) = {
 (blue, green, blue), (blue, red, blue),
 (red, blue, red), (red, green, red), (green, blue, green),
 (green, red, green)}

Simplify

Domain(SA, NSW) = {
 (blue, green), (blue, red),
 (green, blue), (green, red),
 (red, blue), (red, green)}

Domain(NT, SA, NSW) = {
 (blue, green, blue), (blue, red, blue),
 (red, blue, red), (red, green, red), (green, blue, green),
 (green, red, green)}
Can identify all settings of SA, V, NSW for which there is guaranteed to be a consistent setting of the remaining variables.

Q: How do we get the settings of the other variables?

Variable Elimination

Var_elim_CSP_solve (vars, constraints)
Q = queue of all variables
i = length(vars)+1
While not(empty(Q))
 X = pop(Q)
 Xi = merge(X, neighbors(X))
 Simplify Xi (remove variables w/o external connections)
 remove_from_Q(Q, neighbors(X))
 add_to_Q(Q, Xi)
 i=i+1

Note: Merge operation can be tricky to implement, depending upon constraint language.
Variable Elimination Issues

- How expensive is this?
 Exponential in size of largest merged variable set.

- Is it sensitive to elimination ordering?
 Yes!

Variable Elimination Ordering

Is it better to start at the edges and work in, or at the center and work out?
 Edges!
Variable Elimination Facts

- You can figure out the cost of a particular elimination ordering without actually constructing the tables
- Finding optimal elimination ordering is NP hard
- Good heuristics for finding near optimal orderings
- Another structural complexity measure
- Investment in finding good ordering can be amortized

CSP Summary

- CSPs are a specialized language for describing certain types of decision problems
- We can formulate special heuristics and methods for problems that can be described in this language
- In general, CSPs are NP hard – no general, fast solutions on the horizon
- In some cases, we can use structural measures of complexity to figure out which ones are really hard