First Order Logic
(Predicate Calculus)

CPS 170
Ronald Parr

Limitations of Propositional Logic

- Suppose you want to say: All humans are mortal
- For ~6B people, you would need ~6B propositions
- Suppose you want to say that (at least) one person has perfect pitch
- You would need a disjunction of ~6B propositions

- There has to be a better way...
First Order Logic

- Propositional logic is very restrictive
 - Can’t make global statements about objects in the world
 - Workarounds tend to have very large KBs
- First order logic is more expressive
 - Relations, quantification, functions
 - but... inference is trickier

First Order Syntax

- Sentences
- Atomic sentence predicate(term)
- Terms – functions, constants, variables
- Connectives
- Quantifiers
- Constants
- Variables
Relations

- Assert relationships between objects
- Examples
 - Loves(Harry, Sally)
 - Between(Canada, US, Mexico)
- Semantics
 - Object and predicate names are mnemonic only
 - Interpretation is imposed from outside
 - Often we imply the “expected” interpretation of predicates and objects with suggestive names

Functions

- Functions are special cases of relations
- Suppose $R(x_1, x_2, \ldots, x_n, y)$ is such that for every value of x_1, x_2, \ldots, x_n there is a unique y
- Then $R(x_1, x_2, \ldots, x_n)$ can be used as a shorthand for y
 - Crossed(Right_leg_of(Ron), Left_leg_of(Ron))
- Remember that the object identified by a function depends upon the interpretation
Quantification

• For all objects in the world...
 \[\forall x \text{happy}(x) \]

• For at least one object in the world...
 \[\exists x \text{happy}(x) \]

Examples

• Everybody loves somebody
 \[\forall x \exists y \text{Loves}(x,y) \]

• Everybody loves everybody
 \[\forall x \forall y \text{Loves}(x,y) \]

• Everybody loves Raymond
 \[\forall x \text{Loves}(x,\text{Raymond}) \]

• Raymond loves everybody
 \[\forall x \text{Loves} (\text{Raymond}, x) \]
Equality

• Equality states that two objects are the same
 – Son_of(Barbara) = Ron
• Equality is a special relation that holds whenever two objects are the same
• We can imagine that every interpretation comes with its own identity relation
 – Identical(object27, object58)

Inference

• All rules of inference for propositional logic apply to first order logic
• We need extra rules to handle substitution for quantified variables

\[
\text{SUBST}\left(\{x/Harry, y/Sally\}, \text{Loves}(x, y)\right) = \text{Loves}(Harry, Sally)
\]
Inference Rules

- **Universal Elimination**

\[
\forall v : \alpha(v) \\
\text{SUBST}\left(\{v/g\}, \alpha(v)\right)
\]

- How to read this:
 - We have a universally quantified variable \(v \) in \(\alpha \)
 - Can substitute any \(g \) for \(v \) and \(\alpha \) will still be true

Inference Rules

- **Existential Elimination**

\[
\exists v : \alpha(v) \\
\text{SUBST}\left(\{v/k\}, \alpha(v)\right)
\]

- How to read this:
 - We have a universally quantified variable \(v \) in \(\alpha \)
 - Can substitute any \(k \) for \(v \) and \(\alpha \) will still be true
 - **IMPORTANT:** \(k \) must be a *previously unused* constant (*skolem* constant). Why is this OK?
Skolemization within Quantifiers

• Skolemizing w/in universal quantifier is tricky
• Everybody loves somebody
 \(\forall x \exists y : \text{loves}(x,y) \)
• With Skolem constants, becomes:
 \(\forall x : \text{loves}(x,\text{object34752}) \)
• Why is this wrong?
• Need to use \textit{skolem functions}:
 \(\forall x : \text{loves}(x,\text{personlovedby}(x)) \)

Inference Rules

• Existential Introduction
 \[
 \alpha(g) \\
 \infer{\text{SUBST}(\{v/g\},\exists v : \alpha(v))}{\alpha(v)}
 \]
• How to read this:
 – We know that the sentence \(\alpha \) is true
 – Can substitute variable \(v \) for any constant \(g \) in \(\alpha \) and
 (w/existential quantifier) and \(\alpha \) will still be true
 – Why is this OK?
Generalized Modus Ponens Example

• If has_US_birth_certificate(X) then natural_US_citizen(X)

• has_US_birth_certificate(Obama)

• Conclude SUBST({Obama/X},natural_US_citizen(X))

• i.e., natural_US_citizen(Obama)

Generalized Modus Ponens

\[\text{SUBST}(\theta, p_i') = \text{SUBST}(\theta, p_i)_i \forall i \]
\[p_1', p_2', \ldots, p_n', (p_1 \land p_2 \land \ldots \land p_n \Rightarrow q) \]
\[\text{SUBST}(\theta, q) \]

• How to read this:
 – We have an implication which implies \(q \)
 – Any consistent substitution of variables on the LHS must yield a valid conclusion on the RHS
Unification

• Substitution is a non-trivial matter
• We need an algorithm unify:
 \[\text{Unify}(p, q) = \theta : \text{Subst}(\theta, p) = \text{Subst}(\theta, q) \]

• Important: Unification replaces variables:
 \[\exists x \text{Loves}(John, x) \]
 \[\exists x \text{Hates}(John, x) \]
• Are these the same \(x \)?

Unification Example

\[\forall x \text{Knows}(John, x) \Rightarrow \text{Loves}(John, x) \]
\[\text{Knows}(John, Jane) \]
\[\forall y \text{Knows}(y, Leonid) \]
\[\forall y \text{Knows}(y, \text{Mother}(y)) \]
\[\forall x \text{Knows}(x, Elizabeth) \]

Note: All unquantified variables are assumed universal from here on.

\[\text{Unify}(\text{Knows}(John, x), \text{Knows}(John, Jane)) = \{ x / Jane \} \]
\[\text{Unify}(\text{Knows}(John, x), \text{Knows}(y, Leonid)) = \{ x / Leonid, y / John \} \]
\[\text{Unify}(\text{Knows}(John, x), \text{Knows}(y, \text{Mother}(y))) = \{ y / John, x / \text{Mother}(John) \} \]
\[\text{Unify}(\text{Knows}(John, x), \text{Knows}(x, Elizabeth)) = \{ x_1 / Elizabeth, x_2 / John \} \]
Most General Unifier

- Unify(Knows(John,x),Knows(y,z))
 - {y/John,x/z}
 - {y/John,x/z,w/Freda}
 - {y/John,x/John,z/John)
- When in doubt, we should always return the most general unifier (MGU)
 - MGU makes least commitment about binding variables to constants

Proof Procedures

- Suppose we have a knowledge base: KB
- We want to prove q
- Forward Chaining
 - Like search: Keep proving new things and adding them to the KB until we are able to prove q
- Backward Chaining
 - Find $p_1...p_n$ s.t. knowing $p_1...p_n$ would prove q
 - Recursively try to prove $p_1...p_n$
Forward Chaining Example

∀x Knows(John, x) \Rightarrow Loves(John, x)
Knows(John, Jane)
∀y Knows(y, Leonid)
∀y Knows(y, Mother(y))
∀x Knows(x, Elizabeth)

- Loves(John, Jane)
- Knows(John, Leonid)
- Loves(John, Leonid)
- Knows(John, Mother(John))
- Loves(John, Mother(John))
- Knows(John, Elizabeth)
- Loves(John, Elizabeth)

Forward Chaining

Procedure Forward_Chain(KB, p)
If p is in KB then return
Add p to KB
For each (p_1, ..., p_n \Rightarrow q) in KB such that for some i,
Unify(p_i, p) = q succeeds do
 Find_And_Infer(KB, [], p, q)
end

Procedure Find_and_Infer(KB, premises, conclusion, q)
If premises=[] then
 Forward_Chain(KB, Subst(q, conclusion))
Else for each p’ in KB such that
Unify(p’, Subst(q, Head(premises))) = q_2 do
 Find_And_Infer(KB, Tail(premises), conclusion, [q, q_2])
end
A Note About Forward Chaining

- As presented, forward chaining seems undirected
- Can view forward chaining as a search problem
- Can apply heuristics to guide this search
- If you’re trying to prove that Barack Obama is a natural born citizen, should you start by proving that square127 is also a rectangle???
- Interesting AI history: AM/Eurisko controversy
 - Doug Lenat introduced what was essentially a forward chaining system for coming up with interesting math concepts
 - Claimed to (re)discover many interesting concepts using only some simple heuristics
 - Methodology sharply criticized due to opacity (see Ritchie and Hanna 1984 and response from Lenat and Brown 1984)

Backward Chaining Example

\[\forall x \text{Knows}(John,x) \Rightarrow Loves(John,x) \]
\[Knows(John,Jane) \]
\[\forall y \text{Knows}(y,Leonid) \]
\[\forall y \text{Knows}(y,Mother(y)) \]
\[\forall x \text{Knows}(x,Elizabeth) \]

- Goal: Loves(John, Jane)?
- Subgoal: Knows(John,Jane)
Backward Chaining

Function Back_Chain(KB,q)
 Back_Chain_List(KB,[q],{})

Function Back_Chain_List(KB,qlist,q)
If qlist=[] then return q
q<-head(qlist)
For each q_i in KB such that q_i<-Unify(q,q_i') succeeds do
 Answers <- Answers + [q,q_i]
For each (p_1^...^p_n=>q_i') in KB: q_i<-Unify(q,q_i') succeeds do
 Answers<- Answers+
 Back_Chain_List(KB,Subst(q_i,[p_1,...,p_n]),[q,q_i])
return union of Back_Chain_List(KB,Tail(qlist),q) for each q in answers

Completeness

∀X : P(X) ⇒ Q(X)
∀X : ¬P(X) ⇒ R(X)
∀X : Q(X) ⇒ S(X)
∀X : R(X) ⇒ S(X)
S(a)???

• Problem: Generalized Modus Ponens not complete
• Forward/Backward chaining rely upon generalized MP
• Goal: A sound and complete inference procedure for first order logic
Generalized Resolution

\[\theta = \text{Unify}(p_j, \neg q_k) \]

\[(p_1 \lor \ldots p_j \lor p_m), (q_1 \lor \ldots q_k \lor q_n) \]

\[
\text{SUBST}(\theta, (p_1 \lor \ldots p_{j-1} \lor p_{j+1} \ldots \lor p_m \lor q_1 \lor \ldots q_{k-1} \lor q_{k+1} \ldots \lor q_n))
\]

- If the same term appears in both positive and negative form in two disjunctions, they cancel out when disjunctions are combined

Generalized Resolution Example

\[(\neg P(x) \lor Q(x)) \]
\[(P(x) \lor R(x)) \]
\[(\neg Q(x) \lor S(x)) \]
\[(\neg R(x) \lor S(x)) \]

\[S(A) \]
Resolution Properties

• Proof by refutation (asserting negation and resolving to nil) is sound and complete
 (NB: We did not do this in the previous example)
• Resolution is not complete in a generative sense, only in a testing sense
• This is only part of the job
• To use resolution, we must convert everything to a canonical form, i.e., all sentences must be disjunctions with only implicit universal quantification and existential quantification replaced with skolemization

Canonical Form

• Eliminate Implications
• Move negation inwards
• Standardize (apart) variables
• Move quantifiers Left
• Skolemize
• Drop universal quantifiers
• Distribute AND over OR
• Flatten nested conjunctions and disjunctions
Computational Properties

- We can enumerate the set of all proofs
- We can check if a proof is valid
- First order logic is complete (Gödel)

- What if no valid proof exists?
- Inference in first order logic is *semi-decidable*
- Compare with halting problem (halting problem is semi-decidable)

- As with propositional logic, horn clauses are an important special case. More about this when we discuss prolog in a future lecture.

Gödel’s Incompleteness Result

- Gödel’s incompleteness result is, perhaps, better known
- Incompleteness applies to logical/mathematical systems rich enough to contain numbers and math
 - Need a way of enumerating all valid proofs within the system
 - Need a way of referring to proofs by number
- Construct a Gödel sentence:
 - S: For all i, i is not the number of a proof of the sentence j
 - (Equivalent to saying, there does not exist a proof of sentence j)
 - Suppose sentence S is sentence j
 - If S is false, then we have a contradiction
 - If S is true, then we can’t have a proof of it
Diagonalization

- Incompleteness can be seen as an instance of diagonalization:
 - Define a set (Rationals, TMs that halt, theorems that are provable)
 - Use rules of the system to create an impossible object

- Example: Proof that reals are not enumerable (i.e., not countable and therefore larger than the rationals)

Countability of Rationals

\[x = \frac{n_0 \times 2^0 + n_1 \times 2^1 + n_2 \times 2^2 \ldots}{d_0 \times 2^0 + d_1 \times 2^1 + d_2 \times 2^2 \ldots} \]

<table>
<thead>
<tr>
<th>Label</th>
<th>(n_0)</th>
<th>(d_0)</th>
<th>(n_1)</th>
<th>(d_1)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Uncountability of Reals

- Given:

<table>
<thead>
<tr>
<th>Label</th>
<th>n₀</th>
<th>d₀</th>
<th>n₁</th>
<th>d₁</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Construct:

<table>
<thead>
<tr>
<th>Label</th>
<th>n₀</th>
<th>d₀</th>
<th>n₁</th>
<th>d₁</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Implications of all this

- Sophomoric interpretation: AI is impossible/implausible because there will always be true things that cannot be discovered by logic

- A bit of reality:
 - Incompleteness talks about a system’s ability to prove things about itself
 - For any given system, it may be possible to prove things by talking about the system in a more expressive language
 - Relationship of the unprovable to intelligence is murky at best: Are the things you can’t justify the things that make you intelligent?
 - Not clear that anything interesting is unprovable in a practical sense (though plenty of interesting things remain unproven)
First Order Logic Conclusions

- First order logic adds relations and quantification to predicate logic
- Inference in first order logic is, essentially, a generalization of inference in predicate logic
 - Resolution is sound and complete
 - Use of resolution requires:
 - Conversion to canonical form
 - Proof by refutation
- In general, inference is first order logic is semi-decidable
- FOL + basic math is no longer complete