Search in Games

CPS 170
Ron Parr

Why Study Games?

• Many human activities can be modeled as games
 – Negotiations
 – Bidding
 – TCP/IP
 – Military confrontations
 – Pursuit/Evasion

• Games are used to train the mind
 – Human game-playing, animal play-fighting
Why Are Games Good for AI?

• Games typically have concise rules
• Well-defined starting and end points
• Sensing and effecting are simplified
 – Not true for sports games
 – See robocup
• Games are fun!
• Downside: Getting taken seriously (not)
 – See robo search and rescue

Some History of Games in AI

• Computer games have been around almost as long as computers (perhaps longer)
 – Chess: Turing (and others) in the 1950s
 – Checkers: Samuel, 1950s learning program
• Usually start with naïve optimism
• Follow with naïve pessimism
• Simon: Predicted computer chess champ by 1967
• Many, e.g., Kasparov, predicted that a computer would never be champion
Games Today

- Computers perform at champion level
 - Backgammon, Checkers (solved), Chess, Othello
- Computers perform well
 - Bridge, poker
- Computers still do badly
 - (but recent breakthroughs show promise)
 - Go, Hex

Simple Game Setup

- Most commonly, we study games that are:
 - 2 player
 - Alternating
 - Zero-sum
 - Perfect information
- Examples: Checkers, chess, backgammon
- Assumptions can be relaxed at some expense
- Economics studies case where # of agents is very large
 - Individual actions don’t change the dynamics
Zero Sum Games

- Assign values to different outcomes
- Win = 1, Loss = -1
- With zero sum games every gain comes at the other player’s expense
- Sum of both player’s scores must be 0
- Are any games truly zero sum?

Characterizing Games

- Two-player alternating move games are very much like search
 - Initial state
 - Successor function
 - Terminal test
 - Objective function (heuristic function)
- Unlike search
 - Terminal states are often a large set
 - Full search to terminal states usually impossible
Game Trees

Max nodes
A1
A2
A3

Min nodes
A11
A12
A21
A22
A31
A32

Terminal Nodes
Minimax

- Max player tries to maximize his return
- Min player tries to minimize max’ s return
- This is optimal for both (assuming zero sum)

\[
\text{minimax}(n_{\text{max}}) = \max_{s \in \text{successors}(n)} \text{minimax}(s)
\]

\[
\text{minimax}(n_{\text{min}}) = \min_{s \in \text{successors}(n)} \text{minimax}(s)
\]
Minimax Properties

- Minimax can be run depth first
 - Time $O(b^n)$
 - Space $O(bm)$

- Assumes that opponent plays optimally

- Based on a worst-case analysis

- What if this is incorrect?

Minimax in the Real World

- Search trees are too big
- Alternating turns double depth of the search
 - 2 ply = 1 full turn
- Branching factors are too high
 - Chess: 35
 - Go: 361
- Full search from start to end never terminates in non-trivial games
Evaluation Functions

- Like heuristic functions
- Try to estimate value of a node without expanding all the way to termination
- Using evaluation functions
 - Do a depth-limited search
 - Treat evaluation function as if it were terminal
- What’s wrong with this?
- How do you pick the depth?
- How do you manage your time?
 - Iterative deepening, quiescence

Desiderata for Evaluation Functions

- Would like to put the same ordering on nodes (even if values aren’t totally right)
- Is this a reasonable thing to ask for?
- What if you have a perfect evaluation function?
- How are evaluation functions made in practice?
 - Buckets
 - Linear combinations
 - Chess pieces (material)
 - Board control (positional, strategic)
Search Control Issues

• Horizon effects
 – Something interesting is just beyond the horizon?
 – How do you know?
• When to generate more nodes?
• If you selectively extend your frontier, how do you decide where?
• If you have a fixed amount of total game time, how do you allocate this?

Pruning

• *The most important search control method is figuring out which nodes you don’t need to expand*

• Use the fact that we are doing a worst-case analysis to our advantage
 – Cut off search at min nodes when max can already force a better outcome (for max)
 – Cut off search at max nodes when max can already force a better outcome (for min)
How to prune

- We still do (bounded) DFS
- Expand at least one path to the “bottom”

- If current node is max node, and min can force a lower value, then prune siblings

- If current node is min node, and max can force a higher value, then prune siblings
Max node pruning

Implementing alpha-beta

\[
\text{max_value}(\text{state}, \alpha, \beta) \\
\text{if} \ \text{cutoff}(\text{state}) \ \text{then} \ \text{return} \ \text{eval}(\text{state}) \\
\text{for each} \ s \ \text{in} \ \text{successors}(\text{state}) \ \text{do} \\
\quad \alpha = \text{max}(\alpha, \text{min_value}(s, \alpha, \beta)) \\
\quad \text{if} \ \alpha \geq \beta \ \text{then} \ \text{return} \ \beta \\
\text{end} \\
\text{return} \ \alpha
\]

\[
\text{beta}=\text{value of best alternative available to min player}
\]

\[
\text{min_value}(\text{state}, \alpha, \beta) \\
\text{if} \ \text{cutoff}(\text{state}) \ \text{then} \ \text{return} \ \text{eval}(\text{state}) \\
\text{for each} \ s \ \text{in} \ \text{successors}(\text{state}) \ \text{do} \\
\quad \beta = \text{min}(\beta, \text{max_value}(s, \alpha, \beta)) \\
\quad \text{if} \ \beta \leq \alpha \ \text{then} \ \text{return} \ \alpha \\
\text{end} \\
\text{return} \ \beta
\]

\[
\text{alpha}=\text{value of best alternative available to max player}
\]
Amazing facts about alpha-beta

- Empirically, alpha-beta has the effect of reducing the branching factor by *square root* for many problems

- Effectively doubles search horizon

- Alpha-beta makes the difference between novice and expert computer players

What About Probabilities?

```
Max nodes

Chance nodes
P=0.5  P=0.6  P=0.4

Min nodes
P=0.5  P=0.9  P=0.1
```

```
Expectiminimax

- n random outcomes per chance node
- $O(b^m n^m)$ time

\[
\begin{align*}
\text{eminimax}(n_{\text{max}}) &= \max_{s \in \text{successors}(n)} \text{eminimax}(s) \\
\text{eminimax}(n_{\text{min}}) &= \min_{s \in \text{successors}(n)} \text{eminimax}(s) \\
\text{eminimax}(n_{\text{chance}}) &= \sum_{s \in \text{successors}(n)} \text{eminimax}(s) \rho(s)
\end{align*}
\]

Expectiminimax is nasty

- High branching factor
- Randomness makes evaluation fns difficult
  - Hard to predict many steps into future
  - Values tend to smear together
  - Preserving order is not sufficient
- Pruning is problematic
  - Need to prune based upon bound on an expectation
  - Need a priori bounds on the evaluation function
Multiplayer Games

- Things *sort-of* generalize, but can get complicated
- Maintain vector of possible values for each player at each node
- Might assume that each player acts greedily, but what’s wrong with this?
- Correct treatment requires the full machinery of game theory

Conclusions

- Game tree search is a special kind of search
- Rely heavily on heuristic evaluation functions
- Alpha-beta is a big win
- Most successful players use alpha-beta
- Final thought: Tradeoff between search effort and evaluation function effort
- When is it better to invest in your evaluation function?