Reinforcement Learning

Ron Parr
CPS 170

RL Highlights

• Everybody likes to learn from experience
• Use ML techniques to generalize from relatively small amounts of experience

• Some notable successes:
 – Backgammon
 – Flying a helicopter upside down
 – Aerobatic helicopter maneuvers

• Sutton’s seminal RL paper is 96th most cited ref. in computer science (Citeseerx 03/12); Sutton & Barto RL Book is the 9th most cited
Comparison w/Other Kinds of Learning

- Learning often viewed as:
 - Classification (supervised), or
 - Model learning (unsupervised)

- RL is between these (delayed signal)

- What the last thing that happens before an accident?

Overview

- Review of value determination

- Motivation for RL

- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation
Solving for Values

$$V_\pi = \gamma P_\pi V_\pi + R_\pi$$

For moderate numbers of states we can solve this system exactly:

$$V_\pi = (I - \gamma P_\pi)^{-1} R_\pi$$

Guaranteed invertible because γP_π has spectral radius <1

Iteratively Solving for Values

$$V_\pi = \gamma P_\pi V_\pi + R$$

For larger numbers of states we can solve this system indirectly:

$$V_\pi^{i+1} = \gamma P_\pi V_\pi^i + R$$

Guaranteed convergent because γP_π has spectral radius <1 for $\gamma<1$

Convergence not guaranteed for $\gamma=1$
Overview

- Review of value determination
- Motivation for RL
- Algorithms for RL
 - Overview
 - TD
 - Q-learning
 - Approximation

Why We Need RL

- Where do we get transition probabilities?
- How do we store them?
 - Big problems have big models
 - Model size is quadratic in state space size
- Where do we get the reward function?
RL Framework

- Learn by “trial and error”
- No assumptions about model
- No assumptions about reward function
- Assumes:
 - True state is known at all times
 - Immediate reward is known
 - Discount is known

RL for Our Game Show

- Problem: We don’t know probability of answering correctly

- Solution:
 - Buy the home version of the game
 - Practice on the home game to refine our strategy
 - Deploy strategy when we play the real game
Model Learning Approach

• Learn model, solve
• How to learn a model:
 – Take action a in state s, observe s’
 – Take action a in state s, n times
 – Observe s’ m times
 – \(P(s’|s,a) = \frac{m}{n} \)
 – Fill in transition matrix for each action
 – Compute avg. reward for each state
• Solve learned model as an MDP

Limitations of Model Learning

• Partitions learning, solution into two phases
• Model may be large
 – Hard to visit every state lots of times
 – Note: Can’t completely get around this problem...
• Model storage is expensive
• Model manipulation is expensive
Overview

• Review of value determination

• Motivation for RL

• Algorithms for RL
 – TD
 – Q-learning
 – Approximation

Temporal Differences

• One of the first RL algorithms
• Learn the value of a fixed policy
 (no optimization; just prediction)
• Recall iterative value determination:

\[V^{i+1}_\pi(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^i_\pi(s') \]

Problem: We don’t know this.
Temporal Difference Learning

• Remember Value Determination:
 \[V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' | s, \pi(s)) V^i(s') \]

• Compute an update as if the observed \(s' \) and \(r \) were the only possible outcomes:
 \[V_{\text{temp}}(s) = r + \gamma V^i(s') \]

• Make a small update in this direction:
 \[V^{i+1}(s) = (1 - \alpha) V^i(s) + \alpha V_{\text{temp}}(s) \]
 \[0 < \alpha \leq 1 \]

Idea: Value Function Soup

Suppose: \(\alpha = 0.1 \)

Upon observing \(s' \):
- Discard 10% of soup
- Refill with \(V_{\text{temp}}(s) \)
- Stir
- Repeat

One vat for each state

\[V^{i+1}(s) = (1 - \alpha) V^i(s) + \alpha V_{\text{temp}}(s) \]
Example: Home Version of Game

Suppose we guess: \(V(s_3) = 15K \)
We play and get the question **wrong**

\[
V_{\text{temp}} = 0 \\
V(s_3) = (1-\alpha)15K + \alpha0
\]

Convergence?

- Why doesn’t this oscillate?
 - e.g. consider some low probability \(s' \) with a very high (or low) reward value

 – This could still cause a big jump in \(V(s) \)
Convergence Intuitions

- Need heavy machinery from stochastic process theory to prove convergence
- Main ideas:
 - Iterative value determination converges
 - TD updates approximate value determination
 - Samples approximate expectation

\[V^{i+1}(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^i(s') \]

Ensuring Convergence

- Rewards have bounded variance
- \(0 \leq \gamma < 1 \)
- Every state visited infinitely often
- Learning rate decays so that:
 - \(\sum_i \alpha_i(s) = \infty \)
 - \(\sum_i \alpha_i^2(s) < \infty \)

These conditions are jointly sufficient to ensure convergence in the limit with probability 1.
How Strong is This?

- Bounded variance of rewards: easy
- Discount: standard
- Visiting every state infinitely often: Hmm...
- Learning rate: Often leads to slow learning
- Convergence in the limit: Weak
 - Hard to say anything stronger w/o knowing the mixing rate of the process
 - Mixing rate can be low; hard to know a priori

Using TD for Control

- Recall value iteration:
 \[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V^i(s') \]
- Why not pick the maximizing \(a \) and then do:
 \[V^{i+1}(s) = (1 - \alpha)V^i(s) + \alpha V^{temp}(s) \]
 - \(s' \) is the observed next state after taking action \(a \)
Problems

• Pick the best action w/o model?

• Must visit every state infinitely often
 – What if a good policy doesn’t do this?

• Learning is done “on policy”
 – Taking random actions to make sure that all states are visited will cause problems

Q-Learning Overview

• Want to maintain good properties of TD

• Learns good policies and optimal value function, not just the value of a fixed policy

• Simple modification to TD that learns the optimal policy regardless of how you act! (mostly)
Q-learning

• Recall value iteration:

\[V^{i+1}(s) = \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^i(s') \]

• Can split this into two functions:

\[Q^{i+1}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^i(s') \]

\[V^{i+1}(s) = \max_a Q^{i+1}(s,a) \]

Q-learning

• Store Q values instead of a value function
• Makes selection of best action easy
• Update rule:

\[Q^{temp}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q^{i+1}(s,a) = (1 - \alpha) Q^i(s,a) + \alpha Q^{temp}(s,a) \]
Q-learning Properties

- Converges under same conditions as TD
- Still must visit every state infinitely often
- Separates policy you are currently following from value function learning:

\[Q^{\text{temp}}(s,a) = r + \gamma \max_{a'} Q^i(s',a') \]

\[Q^{i+1}(s,a) = (1 - \alpha)Q^i(s,a) + \alpha Q^{\text{temp}}(s,a) \]

Value Function Representation

- Fundamental problem remains unsolved:
 - TD/Q learning solves model-learning problem, but
 - Large models still have large value functions
 - Too expensive to store these functions
 - Impossible to visit every state in large models

- Function approximation
 - Use machine learning methods to generalize
 - Avoid the need to visit every state
Function Approximation

- General problem: Learn function $f(s)$
 - Linear regression
 - Neural networks
 - State aggregation (violates Markov property)

- Idea: Approximate $f(s)$ with $g(s, \theta)$
 - g is some easily computable function of s and θ
 - Try to find θ that minimizes the error in g

Linear Regression

- Define a set of basis functions (vectors)
 $$\phi_1(s), \phi_2(s), \ldots, \phi_k(s)$$

- Approximate f with a weighted combination of these
 $$g(s) = \sum_{j=1}^{k} w_j \phi_j(s)$$

- Example: Space of quadratic functions:
 $$\phi_1(s) = 1, \phi_2(s) = s, \phi_3(s) = s^2$$

- Orthogonal projection minimizes SSE
Updates with Approximation

• Recall regular TD update:

\[V^{i+1}(s) = (1 - \alpha)V^i(s) + \alpha V^{\text{temp}}(s) \]

• With function approximation:

\[V(s) \approx V(s,w) \]

• Update:

\[w^{i+1} = (1 - \alpha)w^i + \alpha V^{\text{temp}}(s)\nabla \theta V(s,w) \]

For linear value functions

• Gradient is trivial:

\[V(s,w) = \sum_{j=1}^{k} w_j \phi_j(s) \]
\[\nabla_{w_j} V(s,w) = \phi_j(s) \]

• Update is trivial:

\[w_{j}^{i+1} = (1 - \alpha)w_{j}^i + \alpha V^{\text{temp}}(s)w\phi_j(s) \]
Properties of approximate RL

- Exact case (tabular representation) = special case
- Can be combined with Q-learning

- Convergence not guaranteed
 - Policy evaluation with linear function approximation converges if samples are drawn “on policy”
 - In general, convergence is not guaranteed
 - Chasing a moving target
 - Errors can compound
- Success requires very well chosen features

How’d They Do That???

- Backgammon (Tesauro)
 - Neural network value function approximation
 - TD sufficient (known model)
 - Carefully selected inputs to neural network
 - About 1 million games played against self
- Helicopter (Ng et al.)
 - Approximate policy iteration
 - Constrained policy space
 - Trained on a simulator
Swept under the rug...

- Difficulty of finding good features
- Partial observability
- Exploration vs. Exploitation

Conclusions

- Reinforcement learning solves an MDP
- Converges for exact value function representation
- Can be combined with approximation methods
- Good results require good features