What is Search?

- Search is a basic problem-solving method
- We start in an initial state
- We examine states that are (usually) connected by a sequence of actions to the initial state
- Note: Search is (usually) a thought experiment (separate topic: Real Time Search)

- We aim to find a solution, which is a sequence of actions that brings us from the initial state to the goal state, minimizing cost
Search vs. Web Search

• When we issue a search query using Google, does Google really go poking around the web for us?

• Not in real time!
• Google spiders the web continually, caches results
• Uses page rank algorithm to find the most “popular” web pages that are consistent with your query

Overview

• Problem Formulation
• Uninformed Search
 – DFS, BFS, IDDFS, etc.
• Informed Search
 – Greedy, A*
• Properties of Heuristics
Problem Formulation

- Four components of a search problem
 - Initial State
 - Actions
 - Goal Test
 - Edge costs (uniform, or varying per edge?)
- Optimal solution = lowest path cost to goal

Example: Path Planning

Find shortest route from one city to another using highways.
Example 8(15)-puzzle

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Solution

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Possible Start State
Goal State

Actions: UP, DOWN, RIGHT, LEFT

“Real” Problems

- Robot motion planning
- Drug design
- Logistics
 - Route planning
 - Tour Planning
- Assembly sequencing
- Internet routing
Why Use Search?

• Other algorithms exist for these problems:
 – Dijkstra’s Algorithm
 – Dynamic programming
 – All-pairs shortest path

• Use search when it is too expensive to enumerate all states

• 8-puzzle has 362,800 states
• 15-puzzle has 1.3 trillion states
• 24-puzzle has 10^{25} states

Basic Search Concepts

• Assume a tree-structured space (for now)
• Nodes: Places in search tree
 (states exist in the problem space)
• Search tree: portion of state space visited so far
• Actions: Connect states to next states
• Expansion: Generation of next states for a state
• Frontier: Set of states visited, but not expanded
• Branching factor: Max no. of successors = b
• Goal depth: Depth of shallowest goal = d
Example Search Tree

b=2

Frontier

8-puzzle

...
Generic Search Algorithm

Function Tree-Search(problem, Queuing-Fn)

fringe = Make-Queue(Make-Node(Initial-State(problem)))
loop do
 if empty(fringe) then return failure
 node = pop(fringe)
 if Goal-Test(problem, state) then return node
 fringe = Add-To-Queue(fringe, expand(node, problem))
end

Interesting details are in the implementation of Add-To-Queue

Evaluating Search Algorithms

• Completeness:
 – Is the algorithm guaranteed to find a solution when there is one?

• Optimality:
 – Does the algorithm find the optimal solution?

• Time complexity
• Space complexity
Uninformed Search: BFS

Frontier is a FIFO

BFS Properties

- Completeness: \(Y \)
- Optimality: (\(Y \) for uniform cost, \(N \) for arbitrary cost)
- Time complexity: \(O(b^{d+1}) \)
- Space complexity: \(O(b^{d+1}) \)
Uninformed Search: DFS

Frontier is a LIFO

DFS Properties

- Completeness: (Y for finite trees, N for infinite trees)
- Optimality: N
- Time complexity: $O(b^{m+1})$ (m = depth we hit, m>d?)
- Space complexity: $O(bm)$
Iterative Deepening

• Want:
 – DFS memory requirements
 – BFS optimality, completeness

• Idea:
 – Do a depth-limited DFS for depth m
 – Iterate over m
IDDFS Properties

- Completeness: γ
- Optimality: (whenever BFS is optimal)
- Time complexity: \(O(b^{d+2})\)
- Space complexity: \(O(bd)\)

IDDFS vs. BFS

Theorem: IDDFS visits no more than twice as many nodes for a binary tree as BFS.

Proof: Assume the tree bottoms out at depth \(d\), BFS visits:

\[2^{d+2} - 1\]

In the worst case, IDDFS does no more than:

\[
\sum_{i=1}^{d} (2^{i+1} - 1) = \sum_{i=1}^{d} 2^{i+1} - \sum_{i=1}^{d} 1 = (2^{d+2} - 2) - d < 2(2^{d+1} - 1) < 2 \times BFS(d)
\]

What about \(b\)-ary trees? IDDFS relative cost is lower!
Bi-directional Search

\[b^{d/2} + b^{d/2} \ll b^d \]

Issues with Bi-directional Search

- Uniqueness of goal
 - Suppose goal is parking your car
 - Huge no. of possible goal states
 (configurations of other vehicles)
- Invertability of actions
What About Repeated States (graphs)

- Can cause incompleteness or enormous runtimes
- Can maintain list of previously visited states to avoid this
 - If new path to the same state has greater cost, don’t pursue it further
 - Leads to time/space tradeoff
- “Algorithms that forget their history are doomed to repeat it” [Russell and Norvig]

Informed Search

- Idea: Give the search algorithm hints
- Heuristic function: $h(x)$
 - $h(x) =$ estimate of cost to goal from x
 - If $h(x)$ is 100% accurate, then we can find the goal in $O(bd)$ time
Greedy Search

- Expand node with lowest $h(x)$
- Optimal if $h(x)$ is 100% correct
- How can we get into trouble with this?

What Price Greed?

What’s broken with greedy search?
A*

- Path cost so far: \(g(x) \)
- Total cost estimate: \(f(x) = g(x) + h(x) \)
- Maintain frontier as a priority queue (on \(f \))
- \(O(bd) \) time if \(h \) is 100% accurate
- We want \(h \) to be an admissible heuristic
- Admissible: never overestimates cost

Some A* Properties

- Admissibility implies \(h(x)=0 \) if \(x \) is a goal state
- Above implies \(f(x) = \text{cost to goal} \) if \(x \) is a goal state and \(x \) is popped off the queue
- What if \(h(x)=0 \) for all \(x \)?
 - Is this admissible?
 - What does the algorithm do?
Optimality of A*

- If h is admissible, A* is optimal
- Proof (by contradiction):
 - Suppose a suboptimal solution node n with solution value f(n) > C* is about to be expanded (where C* is optimal)
 - Let n* be a goal state found on optimal path
 - There must be some node n’ that is currently in the fringe and on the path to n*
 - We have f(n) > C*, and f(n’) = g(n’) + h(n’) ≤ C*
 - But then, n’ should be expanded first (contradiction b/c we are using a priority queue prioritized on f)

Does A* fix the greedy problem?

<table>
<thead>
<tr>
<th>Initial State</th>
<th>h=1</th>
<th>h=1</th>
<th>h=1</th>
<th>h=1</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h=1</td>
<td>h=1</td>
<td>h=1</td>
<td>h=1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>h=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A* is optimally efficient

- A* is optimally efficient: Any other optimal algorithm must expand at least the nodes A* expands (assuming both use the same, admissible h)

Proof:
- Besides solution, A* expands the nodes with $g(n)+h(n) < C^*$
 - Assuming it does not expand non-solution nodes with $g(n)+h(n) = C^*$
- Any other optimal algorithm must expand at least these nodes (since there may be a better solution there)

Properties of Heuristics

- h_2 dominates h_1 if $h_2(x) \geq h_1(x)$ for all x
 (strict dominance if $h_2(x) > h_1(x)$)
- Does this mean that h_2 is better?

- Suppose you have multiple admissible heuristics. How do you combine them?
Designing heuristics

- One strategy for designing heuristics: relax the problem
- “Number of misplaced tiles” heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there
- “Sum of Manhattan distances” corresponds to relaxed problem where multiple tiles can occupy the same spot
- The ideal relaxed problem is
 - easy to solve computationally,
 - close in cost to the real problem
- Some programs can successfully automatically create heuristics