Markov Decision Processes (MDPs)

Ron Parr
CPS 270

The Winding Path to RL

- Decision Theory
- Markov Decision Processes
- Reinforcement Learning
- Descriptive theory of optimal behavior
- Mathematical/Algorithmic realization of Decision Theory
- Application of learning techniques to challenges of MDPs with numerous or unknown parameters

Covered Today

- Decision Theory Review
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Decision Theory

What does it mean to make an optimal decision?

- Asked by economists to study consumer behavior
- Asked by MBAs to maximize profit
- Asked by leaders to allocate resources
- Asked in OR to maximize efficiency of operations
- Asked in AI to model intelligence
- Asked (sort of) by any intelligent person every day
Utility Functions

- A \textit{utility function} is a mapping from world states to real numbers
- Also called a \textit{value function}
- Rational or optimal behavior is typically viewed as maximizing expected utility:

\[
\max_a \sum_s P(s \mid a) U(s)
\]

\(a = \text{actions, } s = \text{states}\)

Playing a Game Show

- Assume series of questions
 – Increasing difficulty
 – Increasing payoff
- Choice:
 – Accept accumulated earnings and quit
 – Continue and risk losing everything
- “Who wants to be a millionaire?”

Swept under the rug today

- Utility of money (assumed 1:1)
- How to determine costs/utilities
- How to determine probabilities

State Representation

Dollar amounts indicate the payoff for getting the question right

Probabilistic Transitions on Attempt to Answer

Start $100

- Correct $1,000
- Correct $10K
- Correct $50K
- $61,100

Downward green arrows indicate the choice to exit the game

Green indicates profit at exit from game

N.B.: These exit transitions should actually correspond to states
Making Optimal Decisions

- Work backwards from future to present

- Consider $50,000 question
 - Suppose $P(\text{correct}) = 1/10$
 - $V(\text{stop}) = $11,100
 - $V(\text{continue}) = 0.9 * $0 + 0.1 * $61.1K = $6.11K$

- Optimal decision stops

Decision Theory Review

- Provides theory of optimal decisions

- Principle of maximizing utility

- Easy for small, tree structured spaces with
 - Known utilities
 - Known probabilities

Working Backwards

- $V=$3,749
- $V=$4,166
- $V=$5,555
- $V=$11.1K

- Red X indicates bad choice

Covered in Today

- Decision Theory

- MDPs

- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming
Dealing with Loops

Suppose you can pay $1000 (from any losing state) to play again

From Policies to Linear Systems

• Suppose we always pay until we win.
• What is value of following this policy?

\[
V(s_0) = 0.10(-1000 + V(s_1)) + 0.90V(s_1) \\
V(s_1) = 0.25(-1000 + V(s_0)) + 0.75V(s_2) \\
V(s_2) = 0.50(-1000 + V(s_0)) + 0.50V(s_3) \\
V(s_3) = 0.90(-1000 + V(s_0)) + 0.10(61100)
\]

And the solution is...

\[
\begin{align*}
V &= $3,749 \\
V &= $4,166 \\
V &= $5,555 \\
V &= $11,111 \\
w/o cheat
\end{align*}
\]

\[
\begin{align*}
V &= $32.47K \\
V &= $32.58K \\
V &= $32.95K \\
V &= $34.43K \\
w/o cheat
\end{align*}
\]

The MDP Framework

• State space: S
• Action space: A
• Transition function: P
• Reward function: R
• Discount factor: \(\gamma \)
• Policy: \(\pi(s) \rightarrow a \)

Objective: Maximize expected, discounted return (decision theoretic optimal behavior)
Applications of MDPs

- AI/Computer Science
 - Robotic control (Koenig & Simmons, Thrun et al., Kaelbling et al.)
 - Air Campaign Planning (Meuleau et al.)
 - Elevator Control (Barto & Crites)
 - Computation Scheduling (Zilberstein et al.)
 - Control and Automation (Moore et al.)
 - Spoken dialogue management (Singh et al.)
 - Cellular channel allocation (Singh & Bertsekas)

- Economics/Operations Research
 - Fleet maintenance (Howard, Rust)
 - Road maintenance (Golabi et al.)
 - Packet Retransmission (Feinberg et al.)
 - Nuclear plant management (Rothwell & Rust)

- EE/Control
 - Missile defense (Bertsekas et al.)
 - Inventory management (Van Roy et al.)
 - Football play selection (Patek & Bertsekas)

- Agriculture
 - Herd management (Kristensen, Toft)

The Markov Assumption

- Let S_t be a random variable for the state at time t

$$P(S_t | A_{t-1} S_{t-1}, ..., A_0 S_0) = P(S_t | A_{t-1} S_{t-1})$$

- Markov is special kind of conditional independence

- Future is independent of past given current state
Understanding Discounting

- **Mathematical motivation**
 - Keeps values bounded
 - What if I promise you $0.01 every day you visit me?

- **Economic motivation**
 - Discount comes from inflation
 - Promise of $1.00 in future is worth $0.99 today

- **Probability of dying**
 - Suppose ε probability of dying at each decision interval
 - Transition w/prob ε to state with value 0
 - Equivalent to $1-\varepsilon$ discount factor

Discounting in Practice

- Often chosen unrealistically low
 - Faster convergence of the algorithms we’ll see later
 - Leads to slightly myopic policies

- Can reformulate most algs. for avg. reward
 - Mathematically uglier
 - Somewhat slower run time

Covered Today

- Decision Theory
- MDPs
- **Algorithms for MDPs**
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Value Determination

Determine the value of each state under policy π

$$V(s) = R(s, \pi(s)) + \gamma \sum_{s'} P(s' \mid s, \pi(s)) V(s')$$

Bellman Equation for a fixed policy π

$$V(s_1) = 1 + \gamma (0.4 V(s_2) + 0.6 V(s_3))$$
Matrix Form

\[
P = \begin{pmatrix}
 P(s_1 \mid s_1, \pi(s_1)) & P(s_2 \mid s_1, \pi(s_1)) & P(s_3 \mid s_1, \pi(s_1)) \\
 P(s_1 \mid s_2, \pi(s_2)) & P(s_2 \mid s_2, \pi(s_2)) & P(s_3 \mid s_2, \pi(s_2)) \\
 P(s_1 \mid s_3, \pi(s_3)) & P(s_2 \mid s_3, \pi(s_3)) & P(s_3 \mid s_3, \pi(s_3))
\end{pmatrix}
\]

\[V = \gamma P \pi V + R\]

This is a generalization of the game show example from earlier.

How do we solve this system efficiently? Does it even have a solution?

Solving for Values

\[V = \gamma P \pi V + R\]

For moderate numbers of states we can solve this system exactly:

\[V = (I - \gamma P \pi)^{-1} R\]

Guaranteed invertible because \(\gamma P \pi\) has spectral radius <1

Iteratively Solving for Values

\[V = \gamma P \pi V + R\]

For larger numbers of states we can solve this system indirectly:

\[V^{i+1} = \gamma P \pi V^i + R\]

Guaranteed convergent because \(\gamma P \pi\) has spectral radius <1

Establishing Convergence

- Eigenvalue analysis
 (don’t worry if you don’t know this)

- Monotonicity
 - Assume all values start pessimistic
 - One value must always increase
 - Can never overestimate
 - Easy to prove

- Contraction analysis...
Contraction Analysis

• Define maximum norm
 \[\| V \|_\infty = \max_i V[i] \]

• Consider V1 and V2
 \[\| V_1^a - V_1^b \|_\infty = \varepsilon \]

• WLOG say
 \[V_1^a \leq V_1^b + \varepsilon \] (Vector of all \(\varepsilon \)’s)

Contraction Analysis Contd.

• At next iteration for \(V^a \):
 \[V_i^b = R + \gamma P V_1^a \]

• For \(V^a \)
 \[V_2^a = R + \gamma P (V_1^b + \varepsilon) = R + \gamma P V_1^b + \gamma \varepsilon = R + \gamma P V_1^b + \gamma \varepsilon \]

• Conclude:
 \[\| V_2^a - V_2^b \|_\infty \leq \gamma \varepsilon \]

Importance of Contraction

• Any two value functions get closer

• True value function \(V^* \) is a fixed point
 (value doesn’t change with iteration)

• Max norm distance from \(V^* \) decreases
 dramatically quickly with iterations
 \[\| V_0^a - V^* \|_\infty = \varepsilon \to \| V_n^a - V^* \|_\infty \leq \gamma^n \varepsilon \]

Covered Today

• Decision Theory

• MDPs
 • Algorithms for MDPs
 • Value Determination
 • Optimal Policy Selection
 • Value Iteration
 • Policy Iteration
 • Linear Programming
Finding Good Policies

Suppose an expert told you the “true value” of each state:

\[V(S1) = 10 \]
\[V(S2) = 5 \]

Improving Policies

- How do we get the optimal policy?
- If we knew the values under the optimal policy, then just take the optimal action in every state.
- How do we define these values?
- Fixed point equation with choices (Bellman equation):

\[V^*(s) = \max_a R(s,a) + \sum_{s'} \gamma P(s'| s,a)V^*(s') \]

Value Iteration

- We can’t solve the system directly with a max in the equation.
- Can we solve it by iteration?

\[V^{i+1}(s) = \max_a R(s,a) + \sum_{s'} \gamma P(s'| s,a)V^i(s') \]

- Called value iteration or simply successive approximation.
- Same as value determination, but we can change actions.
- Convergence:
 - Can’t do eigenvalue analysis (not linear)
 - Still monotonic
 - Still a contraction in max norm (exercise)
 - Converges quickly

Properties of Value Iteration

- VI converges to the optimal policy (implicit in the maximizing action at each state).
- Why? (Because we figure out \(V^* \))
- Optimal policy is stationary (i.e. Markovian – depends only on current state).
- Why? (Because we are summing utilities. Thought experiment: Suppose you think it’s better to change actions the second time you visit a state. Why didn’t you just take the best action the first time?)
Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Greedy Policy Construction

Let’s name the action that looks best WRT V:

$$\pi_v(s) = \arg \max_a R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')$$

Expectation over next-state values

$$\pi_v = \text{greedy}(V)$$

Consider our first policy

$V = \{3.7K, 4.1K, 5.6K, 11.1K\}$

w/o cheat

$\$-1000$9/10$ 3/4 $1/2$ 1/10

Guess $\pi_v = \pi_0$

$V_\pi = \text{value of acting on } \pi$

(solve linear system)

$\pi_v \leftarrow \text{greedy}(V_\pi)$

Repeat until policy doesn’t change

Guaranteed to find optimal policy

Usually takes very small number of iterations

Computing the value functions is the expensive part
Comparing VI and PI

- **VI**
 - Value changes at every step
 - Policy may change at every step
 - Many cheap iterations
- **PI**
 - Alternates policy/value updates
 - Solves for value of each policy exactly
 - Fewer, slower iterations (need to invert matrix)
- **Convergence**
 - Both are contractions in max norm
 - PI is shockingly fast in practice

Computational Complexity

- VI and PI are both contraction mappings w/rate γ
 - (we didn’t prove this for PI in class)
- **VI** costs less per iteration
- For n states, a actions PI tends to take $O(n)$ iterations in practice
 - Recent results indicate $\sim O(n^2/\beta)$ worst case
 - Interesting aside: Biggest insight into PI came ~50 years after the algorithm was introduced

Covered Today

- Decision Theory
- MDPs
- Algorithms for MDPs
 - Value Determination
 - Optimal Policy Selection
 - Value Iteration
 - Policy Iteration
 - Linear Programming

Linear Programming Review

- Minimize: $c^T x$
- Subject to: $Ax \geq b$
- Can be solved in weakly polynomial time
- Arguably most common and important optimization technique in history
Linear Programming

\[V(s) = R(s,a) + \gamma \max_a \sum_{s'} P(s'|s,a) V(s') \]

Issue: Turn the non-linear max into a collection of linear constraints

\[\forall s,a : V(s) \geq R(s,a) + \gamma \sum_{s'} P(s'|s,a) V(s') \]

MINIMIZE: \[\sum_s V(s) \]

Optimal action has tight constraints

Weakly polynomial; slower than PI in practice (though can be modified to behave like PI)

MDP Difficulties → Reinforcement Learning

• MDP operate at the level of states
 – States = atomic events
 – We usually have exponentially (or infinitely) many of these
• We assume P and R are known
• Machine learning to the rescue!
 – Infer P and R (implicitly or explicitly from data)
 – Generalize from small number of states/policies

Advanced Topics

• Multiple agents
• Reinforcement Learning
• Partial observability