Planning

CPS 270
Ron Parr

Some Actual Planning Applications

• Used to fulfill mission objectives in Nasa’s Deep Space One (Remote Agent)
 – Particularly important for space operations due to latency
 – Also used for rovers
• Aircraft assembly schedules
• Logistics for the U.S. Navy
• Observation schedules for Hubble space telescope
• Scheduling of operations in an Australian beer factory

Scheduling

• Many “planning” problems are scheduling problems
• Scheduling can be viewed as a generalization of the planning problem to include resource constraints
 – Time & Space
 – Money & Energy
• Many principles from regular planning generalize, but some extensions (not discussed here) are used

Characterizing Planning Problems

• Start state (group of states)
• Goal – almost always a group of states
• Actions
• Objective: Plan = A sequence of actions that is guaranteed to achieve the goal.
• Like everything else, can view planning as search...
• So, how is this different from generic search?
What makes planning special?

- States typically specified by a set of relations or propositions:
 - On(solar_panels, cargo_floor)
 - arm_broken
- Goal is almost always a set
 - Typically care about a small number of things:
 - at(Ron, airport),
 - parked_in(X, car_of(Ron))
 - airport_parking_stall(X)
 - Many things are irrelevant
 - parked_in(Y, car_of(Bill))
 - adjacent(X,Y)
- Branching factor is large

Planning Algorithms

- Extremely active and rapidly changing area
- Annual competitions pit different algorithms against each other on suites of challenge problems
- Algorithms compete in different categories
 - General vs. Domain specific
 - Optimal vs. Satisficing
- No clearly superior method has emerged, though there are trends – satplan is one such trend

PDDL – A Language for Planning

- Actions have a set of preconditions and effects
- Think of the world as a database
 - Preconditions specify what must be true in the database for the action to be applied
 - Effects specify which things will be changed in the database if the action is taken
- NB: PDDL supersedes an earlier, similar representation called STRIPS

move(obj,from,to)

- Preconditions
 - clear(obj)
 - on(obj,from)
 - clear(to)
- Effects
 - Add
 - on(obj,to)
 - clear(from)
 - Delete
 - on(obj,from)
 - clear(to)

move(y,x,z)
Limitations of PDDL

- Assumes that a small number of things change with each action
 - Dominoes
 - Pulling out the bottom block from a stack
- Preconditions and effects are conjunctions
- No quantification
- Closed world assumption (negation in effects only implemented as deletion)

How hard is planning?

- Planning is NP hard
- How can we prove this?
 - Use Planning to solve 3SAT
 - Any 3SAT instance can be converted to a planning problem in polynomial time
 - Polynomial time planning algorithm would imply polynomial time solution to 3SAT

Is planning NP-complete?

- NO!
- Consider the towers of Hanoi:
 - PDDL actions are the block moving actions
- Requires exponential number of moves
- Planning is actually PSPACE complete
- Planning with bounded plans is NP-complete

Should plan size worry us?

- What if you have a problem with an exponential length solution?
- Impractical to execute (or even write down) the solution, so maybe we shouldn’t worry
- Sometimes this may just be an artifact of our action representation
 - Towers of Hanoi solution can be expressed as a simple recursive program
 - Nice if planner could find such programs
Planning Using Search

- **Forward Search:**
 - Blind forward search is problematic because of the huge branching factor
 - Some success using this method with carefully chosen action pruning heuristics (not covered in class)
- **Backward Search:**
 - Called “Goal Regression” in the planning context
 - Must be done in a clever way because goal is usually a state set (no single goal state)

Goal Regression

- Goal regression is a form of backward search from goals
- Basic principle goes back to Aristotle
- Embodied in earliest AI systems
 - GPS: General Problem Solver by Newell & Simon
- Cognitively plausible
- Idea:
 - Pick actions that achieve (some of) your goal
 - Make preconditions of these actions your new goal
 - Repeat until the goal set is satisfied by start state

Goal Regression Example

- Regress on(x,z) through move(z,table,x)
- New goal: clear(x)
- Goal: on(x,z)

Greed, decomposition in planning

- Does a greedy approach work for planning?
- Idea:
 - Pick actions that satisfy as many parts of the goal as possible
 - If no single action satisfies any part of the goal, break up the goal into pieces and plan to solve each of them individually
- Bad news: This works poorly in general
The Sussman Anomaly

Goal: on(x,y), on(y,z)

Problems with naïve subgoaling

- The number of conjuncts satisfied may not be a good heuristic
- Achieving individual conjuncts in isolation may actually make things harder
- Causes simple planners to go into loops and/or take lots of wasted steps

Summary of Traditional Planners

- Backward search methods are more focused; with careful construction these could be sound and complete generic planners
- Forward search methods worked well when:
 - Search space was very narrow (only a small number of reasonable things to do, which prevented exponential growth in reachable search space)
 - Domain-specific knowledge could be used to narrow the search space

Modern Planners

- One family uses sophisticated heuristics (graphplan)
 - Uses various tricks to narrow search space
 - Tracks subgoal interactions to avoid doing silly things with problems like the Sussman anomaly
 - May use forward or backward planning
- Another family uses forward chaining with domain specific tricks to prune the search space
- Yet another family converts everything into a giant SAT problem and runs a highly optimized SAT solve (SATPlan)
What’s Missing?

- As described, plans are “open loop”
- No provisions for:
 - Actions failing
 - Uncertainty about initial state
 - Observations

- Solutions:
 - Plan monitoring, replanning
 - Conformant/Sensorless planning
 - Contingency planning

Planning Under Uncertainty

- What if there is a probability distribution over possible outcomes?
 - Called: Planning under uncertainty, decision theoretic planning, Markov Decision Processes (MDPs)
 - Much more robust: Solution is a “universal plan”, i.e., a plan for all possible outcomes (monitoring and replanning are implicit)
 - Much more difficult computationally

- What if observations are unreliable?
 - Called: “Partial Observability”, Partially Observable MDPs (POMDPs)
 - Applications to medical diagnosis, defense, sensor planning
 - Way, way harder computationally