Relational model: review

- A database is a collection of relations (or tables)
- Each relation has a list of attributes (or columns)
- Each attribute has a domain (or type)
- Each relation contains a set of tuples (or rows)

Keys

- A set of attributes \(K \) is a key for a relation \(R \) if
 - In no instance of \(R \) will two different tuples agree on all attributes of \(K \)
 - That is, \(K \) is a “tuple identifier”
 - No proper subset of \(K \) satisfies the above condition
 - That is, \(K \) is minimal
- Example: Student (SID, name, age, GPA)
 - SID is a key of Student
 - \{SID, name\} is not a key (not minimal)
Schema vs. data

<table>
<thead>
<tr>
<th>Student</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID</td>
</tr>
<tr>
<td>142</td>
</tr>
<tr>
<td>123</td>
</tr>
<tr>
<td>857</td>
</tr>
<tr>
<td>456</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

- Is name a key of Student?
 - No
- Key declarations are part of the schema

More examples of keys

- Enroll (SID, CID)
- Address (street_address, city, state, zip)

Usage of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
 - Many selection conditions are “key = value”
- “Pointers”
 - Example: Enroll (SID, CID)
 - SID is a key of Student
 - CID is a key of Course
 - An Enroll tuple “links” a Student tuple with a Course tuple
 - Many join conditions are “key = key value stored in another table”
Database design

- Understand the real-world domain being modeled
- Specify it using a database design model
 - Design models are especially convenient for schema design, but are not necessarily implemented by DBMS
 - Popular ones include
 - Entity/Relationship (E/R) model
 - Object Definition Language (ODL)
- Translate specification to the data model of DBMS
 - Relational, XML, object-oriented, etc.
- Create DBMS schema

Entity-relationship (E/R) model

- Historically very popular
- Can think of as a “watered-down” object-oriented design model
- E/R diagrams represent designs
- Primarily a design model—not implemented by any major DBMS

E/R basics

- Entity: a “thing,” like a record or an object
- Entity set: a collection of things of the same type, like a relation of tuples or a class of objects
 - Represented as a rectangle
- Relationship: an association among two or more entities
- Relationship set: a set of relationships of the same type; an association among two or more entity sets
 - Represented as a diamond
- Attributes: properties of entities or relationships, like attributes of tuples or objects
 - Represented as ovals
An example E/R diagram

- Students enroll in courses

 ![E/R Diagram]

 - A key of an entity set is represented by underlining all attributes in the key
 - A key is a set of attributes whose values can belong to at most one entity in an entity set—like a key of a relation

Attributes of relationships

- Example: students take courses and receive grades

 ![E/R Diagram]

 - Where do the grades go?
 - With Students?
 - *
 - With Courses?
 - *
 - With Enroll?

More on relationships

- There could be multiple relationship sets between the same entity sets
 - Example: Students Enroll Courses; Students TA Courses

- In a relationship set, each relationship is uniquely identified by the entities it connects
 - Example: Between Bart and CPS196, there can be at most one Enroll relationship and at most one TA relationship

 - What if Bart took CPS196 twice and got two different grades?
Multiplicity of relationships

- **E and F**: entity sets
- **Many-many**: Each entity in E is related to 0 or more entities in F and vice versa
 - Example: Students 🔄 Enroll 🔄 Courses
- **Many-one**: Each entity in E is related to 0 or 1 entity in F, but each entity in F is related to 0 or more in E
 - Example: Course 🔄 Instructs 🔄 Instructor
- **One-one**: Each entity in E is related to 0 or 1 entity in F and vice versa
 - Example: Students 🔄 Own 🔄 TpadAccounts
- **Notation**: "One" (0 or 1) is represented by an arrow

N-ary relationships

- **Example**: Each course has multiple TA’s; each student is assigned to one TA
 - Students 🔄 Enroll 🔄 Courses

 - TA’s

- **Meaning of an arrow into E**: Pick one entity from each other entity set; together they must be related to 0 or 1 entity in E

N-ary versus binary relationships

- **Can we model n-ary relationships using just binary relationships?**
 - Students 🔄 Enroll 🔄 Courses

 - AssignedTo 🔄 Own 🔄 TpadAccounts

 - TA’s
Roles in relationships

- An entity set may participate more than once in a relationship set
- May need to label edges to distinguish roles
- Examples
 - People are married as husband and wife; label needed
 - People are roommates of each other; label not needed

![Diagram showing roles in relationships]

Weak entity sets

- Sometimes the key of an entity set E comes not completely from its own attributes, but from the keys of other (one or more) entity sets to which E is linked by many-one (or one-one) relationship sets
- E is called a weak entity set
 - Represented by double rectangle
 - Many-one (or one-one) relationship sets required
 - Represented by double diamonds
 - With many-many, we would not know which entity provides the key value

![Diagram showing weak entity sets]

Weak entity set examples

- Seats in rooms in buildings

![Diagram showing weak entity set examples]
Modeling n-ary relationships

- An n-ary relationship set can be replaced by a weak entity set (called a connecting entity set) and n binary relationship sets.

[Diagram showing the replacement of an n-ary relationship set by a weak entity set and binary relationship sets]

Note that the multiplicity constraint is lost.

ISA relationships

- Similar to the idea of subclasses in object-oriented programming: subclass = special case, more properties, and fewer entities.
 - Represented as a triangle (direction is important).
- Example: Graduate students are students, but they also have offices.

[Diagram showing the ISA relationship between students and graduate students]

Summary of E/R concepts

- Entity sets
 - Keys
 - Weak entity sets
- Relationship sets
 - Attributes of relationships
 - Multiplicity
 - Roles
 - Binary versus N-ary relationships
 - Modeling N-ary relationships with weak entity sets and binary relationships
 - ISA relationships
Case study 1

- Design a database representing cities, counties, and states
 - For states, record name and capital (city)
 - For counties, record name, area, and location (state)
 - For cities, record name, population, and location (county and state)

- Assume the following:
 - Names of states are unique
 - Names of counties are only unique within a state
 - Names of cities are only unique within a county
 - A city is always located in a single county
 - A county is always located in a single state

Case study 1: first design

Case study 1: second design
Case study 2

- Design a database consistent with the following:
 - A station has a unique name and an address, and is either an express station or a local station
 - A train has a unique number and an engineer, and is either an express train or a local train
 - A local train can stop at any station
 - An express train only stops at express stations
 - A train can stop at a station for any number of times during a day
 - Train schedules are the same everyday

Case study 2: first design

- Trains
- Stands
- Stations

Case study 2: second design

- Trains
- LocalTrainStops
- ExpressTrainStops
- Stations