Motivation

- How do we tell if a design is bad, e.g., `StudentEnroll (SID, name, CID)`?
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes of Y
FD examples

Address (street_address, city, state, zip)

_____ redefined using FD’s

Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?
Attribute closure

- Given \(R \), a set of FD's \(\mathcal{F} \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):
 - The closure of \(Z \) (denoted \(Z^+ \)) with respect to \(\mathcal{F} \) is the set of all attributes functionally determined by \(Z \)
- Algorithm for computing the closure
 - Start with closure \(= Z \)
 - If \(X \rightarrow Y \) is in \(\mathcal{F} \) and \(X \) is already in the closure, then also add \(Y \) to the closure
 - Repeat until no more attributes can be added

A more complex example

StudentGrade (\(SID, name, email, CID, grade \))

- Not a good design, and we will see why later

Example of computing closure

- \(\mathcal{F} \) includes:
 - \(\{ CID, email \}^+ = ? \)
Using attribute closure

Given a relation R and set of FD's F

- Does another FD $X \rightarrow Y$ follow from F?
 - Compute X^+ with respect to F
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from F

- Is K a key of R?
 - Compute K^+ with respect to F
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$

Using rules of FD’s

Given a relation R and set of FD’s F

- Does another FD $X \rightarrow Y$ follow from F?
 - Use the rules to come up with a proof
 - Example:
 - F includes:
 - $SID \rightarrow name, email; email \rightarrow SID; SID, CID \rightarrow grade$
 - $CID, email \rightarrow grade$?
 - $email \rightarrow SID$ (given in F)
 - $CID, email \rightarrow CID, SID$ (augmentation)
 - $SID, CID \rightarrow grade$ (given in F)
 - $CID, email \rightarrow grade$ (transitivity)
Non-key FD's

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

Example of redundancy

- StudentGrade (SID, name, email, CID, grade)
- SID \rightarrow name, email

Decomposition

- Eliminates redundancy
- To get back to the original relation:
Unnecessary decomposition

![Table showing SID, name, email for students]

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Bad decomposition

![Table showing SID, CID, grade for courses]

- Association between CID and grade is lost
- Join returns more rows than the original relation

Lossless join decomposition

- Decompose relation \(R \) into relations \(S \) and \(T \)
 - \(\text{att}(R) = \text{att}(S) \cup \text{att}(T) \)
 - \(S = \pi_{\text{att}(S)}(R) \)
 - \(T = \pi_{\text{att}(T)}(R) \)
- The decomposition is a lossless join decomposition if, given constraints such as FD's, we can guarantee that \(R = S \bowtie T \)

- Any decomposition has \(R \subseteq S \bowtie T \) (why?)
 - A lossy decomposition is one with \(R \not\subseteq S \bowtie T \)
Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

<table>
<thead>
<tr>
<th>SID</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>CPS196</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>CPS196</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>CPS196</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>CPS196</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>CPS114</td>
<td>C</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation \(R \) is in Boyce-Codd Normal Form if
 - For every non-trivial FD \(X \rightarrow Y \) in \(R \), \(X \) is a super key
 - That is, all FDs follow from “key → other attributes”

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a lossless join decomposition!
BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)
BCNF violation: SID \rightarrow name, email

Another example

StudentGrade (SID, name, email, CID, grade)
BCNF violation:
Why is BCNF decomposition lossless

Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:

\(\checkmark \) Anything we project always comes back in the join:
\[R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
- Sure; and it doesn’t depend on the FD

\(\checkmark \) Anything that comes back in the join must be in the original relation:
\[R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R) \]
- Proof makes use of the fact that \(X \rightarrow Y \)

Recap

\(\checkmark \) Functional dependencies: a generalization of the key concept

\(\checkmark \) Non-key functional dependencies: a source of redundancy

\(\checkmark \) BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition

\(\checkmark \) BCNF: schema in this normal form has no redundancy due to FD’s