Motivation

How do we tell if a design is bad, e.g., StudentEnroll (SID, name, CID)?
- This design has redundancy, because the name of a student is recorded multiple times, once for each course the student is taking.

How about a systematic approach to detecting and removing redundancy in designs?
- Dependencies, decompositions, and normal forms

Functional dependencies

- A functional dependency (FD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \).
- \(X \rightarrow Y \) means that whenever two tuples in \(R \) agree on all the attributes in \(X \), they must also agree on all attributes of \(Y \).

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Must be | Could be anything

FD examples

Address (street_address, city, state, zip)
- street_address, city, state \(\rightarrow \) zip
- zip \(\rightarrow \) city, state
- zip, state \(\rightarrow \) zip?
 - This is a trivial FD
 - Trivial FD: LHS \(\supseteq \) RHS
- zip \(\rightarrow \) state, z \(\neq \) zip?
 - This is non-trivial, but not completely non-trivial
 - Completely non-trivial FD: LHS \(\cap \) RHS = \(\emptyset \)

Keys redefined using FD’s

A set of attributes \(K \) is a key for a relation \(R \) if
- \(K \rightarrow \) all (other) attributes of \(R \)
 - That is, \(K \) is a “super key”
- No proper subset of \(K \) satisfies the above condition
 - That is, \(K \) is minimal

Reasoning with FD’s

Given a relation \(R \) and a set of FD’s \(F \)
- Does another FD follow from \(F \)?
 - Are some of the FD’s in \(F \) redundant (i.e., they follow from the others)?
- Is \(K \) a key of \(R \)?
 - What are all the keys of \(R \)?
Attribute closure

Given \(R \), a set of FD’s \(F \) that hold in \(R \), and a set of attributes \(Z \) in \(R \):

- The closure of \(Z \) (denoted \(Z^+ \)) with respect to \(F \) is the set of all attributes functionally determined by \(Z \).
- Algorithm for computing the closure
 - Start with closure = \(Z \)
 - If \(X \rightarrow Y \) is in \(F \) and \(X \) is already in the closure, then also add \(Y \) to the closure
 - Repeat until no more attributes can be added

A more complex example

- \(\text{StudentGrade} \) (\(\text{SID} \), \(\text{name} \), \(\text{email} \), \(\text{CID} \), \(\text{grade} \))
 - \(\text{SID} \rightarrow \text{name} \), \(\text{email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID}, \text{CID} \rightarrow \text{grade} \)

- Not a good design, and we will see why later

Example of computing closure

- \(F \) includes:
 - \(\text{SID} \rightarrow \text{name}, \text{email} \)
 - \(\text{email} \rightarrow \text{SID} \)
 - \(\text{SID}, \text{CID} \rightarrow \text{grade} \)

- \(\{ \text{CID}, \text{email} \}^+ = ? \)

- \(\text{email} \rightarrow \text{SID} \)
 - Add \(\text{SID} \); closure is now \(\{ \text{CID}, \text{email}, \text{SID} \} \)

- \(\text{SID} \rightarrow \text{name}, \text{email} \)
 - Add \(\text{name}, \text{email} \); closure is now \(\{ \text{CID}, \text{email}, \text{SID}, \text{name} \} \)

- \(\text{SID}, \text{CID} \rightarrow \text{grade} \)
 - Add \(\text{grade} \); closure is now all the attributes in \(\text{StudentGrade} \)

Using attribute closure

- Given a relation \(R \) and set of FD’s \(F \)
 - Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Compute \(X^+ \) with respect to \(F \)
 - If \(Y \subseteq X^+ \), then \(X \rightarrow Y \) follow from \(F \)

- Is \(K \) a key of \(R \)?
 - Compute \(K^+ \) with respect to \(F \)
 - If \(K^+ \) contains all the attributes of \(R \), \(K \) is a super key
 - Still need to verify that \(K \) is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

Using rules of FD’s

- Given a relation \(R \) and set of FD’s \(F \)
 - Does another FD \(X \rightarrow Y \) follow from \(F \)?
 - Use the rules to come up with a proof

- Example:
 - \(F \) includes:
 - \(\text{SID} \rightarrow \text{name}, \text{email} \), \(\text{email} \rightarrow \text{SID} \), \(\text{SID}, \text{CID} \rightarrow \text{grade} \)
 - \(\text{CID}, \text{email} \rightarrow \text{grade} \)
 - \(\text{email} \rightarrow \text{SID} \) (given in \(F \))
 - \(\text{CID}, \text{email} \rightarrow \text{SID} \) (augmentation)
 - \(\text{SID}, \text{CID} \rightarrow \text{grade} \) (given in \(F \))
 - \(\text{CID}, \text{email} \rightarrow \text{grade} \) (transitivity)
Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

$$
\begin{array}{ccc}
 A & B & C \\
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 \vdots & \vdots & \vdots \\
\end{array}
$$

The fact that a is always associated with b is recorded in multiple rows: redundancy!

Example of redundancy

- $StudentGrade (SID, name, email, CID, grade)$
- $SID \rightarrow name, email$

```
<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS196</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td><a href="mailto:milhouse@fox.com">milhouse@fox.com</a></td>
<td>CPS196</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS196</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td><a href="mailto:ralph@fox.com">ralph@fox.com</a></td>
<td>CPS114</td>
<td>C</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
```

Decomposition

- Eliminates redundancy
- To get back to the original relation: \Join

```
<table>
<thead>
<tr>
<th>StudentID</th>
<th>name</th>
<th>email</th>
<th>CourseID</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS196</td>
<td>B-</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td><a href="mailto:bart@fox.com">bart@fox.com</a></td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td><a href="mailto:milhouse@fox.com">milhouse@fox.com</a></td>
<td>CPS196</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS196</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td><a href="mailto:lisa@fox.com">lisa@fox.com</a></td>
<td>CPS130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td><a href="mailto:ralph@fox.com">ralph@fox.com</a></td>
<td>CPS114</td>
<td>C</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>
```

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

BAD decomposition

- Association between CID and $grade$ is lost
- Join returns more rows than the original relation

Lossless join decomposition

- Decompose relation R into relations S and T
 - $attrs(R) = attrs(S) \cup attrs(T)$
 - $S = \pi_{attr(S)}(R)$
 - $T = \pi_{attr(T)}(R)$
- The decomposition is a lossless join decomposition if, given constraints such as FD’s, we can guarantee that $R = S \Join T$
- Any decomposition has $R \subseteq S \Join T$ (why?)
 - A lossy decomposition is one with $R \subset S \Join T$
Loss? But I got more rows!

- "Loss" refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

```
SID CID grade
142 CPS196 B-
142 CPS114 B
123 CPS196 B+
857 CPS196 A+
857 CPS130 A+
456 CPS114 C
... ...
```

No way to tell which is the original relation

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)

An answer: BCNF

- A relation \(R \) is in Boyce-Codd Normal Form if
 - For every non-trivial FD \(X \rightarrow Y \) in \(R \), \(X \) is a super key
 - That is, all FDs follow from "key \(\rightarrow \) other attributes"

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \)
- Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \), where \(Z \) contains all attributes of \(R \) that are in neither \(X \) nor \(Y \)
- Repeat until all relations are in BCNF

BCNF decomposition example

```
StudentGrade (SID, name, email, CID, grade)
  BCNF violation: SID \rightarrow name, email

Student (SID, name, email)
  BCNF

Grade (SID, CID, grade)
  BCNF
```

Another example

```
StudentGrade (SID, name, email, CID, grade)
  BCNF violation: email \rightarrow SID

StudentID (email, SID)
  BCNF

StudentGrade' (email, name, CID, grade)
  BCNF violation: email \rightarrow name

StudentName (email, name)
  BCNF

Grade (email, CID, grade)
  BCNF
```
Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:
- Anything we project always comes back in the join:
 \[R \subseteq \pi_{XY}(R) \triangleright \pi_{XZ}(R) \]
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 \[R \supseteq \pi_{XY}(R) \triangleright \pi_{XZ}(R) \]
 - Proof makes use of the fact that $X \rightarrow Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s