Relational Database Design Theory
Part II

CPS 196.3
Introduction to Database Systems

Announcement

- Project proposal/progress report due today
- Midterm next Thursday in class
 - Everything up to today’s lecture, with a focus on the materials covered by the first two homework assignments
 - Open book, open notes
- Will assign an optional problem set tonight as a study guide for midterm
 - Entirely optional
 - If you turn it in on Tuesday in class, you can use its grade to replace your lowest homework grade so far
 - Solution will be posted on Tuesday midnight
- Graded Homework #2 will be available on Tuesday

Review

- Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - A generalization of the key concept
 - Non-key functional dependencies: a source of redundancy
 - No trivial $X \rightarrow Y$ where X is not a superkey
 - Called a BCNF violation
- BCNF decomposition: a method for removing redundancies
 - Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into
 - $R_1(X, Y)$ and $R_2(X, Z)$
 - A lossless join decomposition
 - Schema in BCNF has no redundancy due to FD’s
Next

- 3NF (BCNF is too much)
- Multivalued dependencies: another source of redundancy
- 4NF (BCNF is not enough)

Motivation for 3NF

- Address (street_address, city, state, zip)
 - street_address, city, state \rightarrow zip
 - zip \rightarrow city, state
- Keys
- BCNF?

To decompose or not to decompose

Address_1
Address_2
- FD's in Address_1
- FD's in Address_2

- Hey, where is street_address, city, state \rightarrow zip?
 - Cannot check without joining Address_1 and Address_2 back together
- Problem: Some lossless join decomposition is not dependency-preserving
- Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?
3NF

- R is in Third Normal Form (3NF) if for every non-trivial FD X → A (where A is a single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R
- Intuitively, BCNF decomposition on X → A would “break” the key containing A
- So Address is already in 3NF
- Tradeoff:
 - Can enforce all original FD’s on individual decomposed relations
 - Might have some redundancy due to FD’s

BNCF = no redundancy?

- Student (SID, CID, club)
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - BNCF?
 - Redundancies?

Multivalued dependencies

- A multivalued dependency (MVD) has the form X → Y, where X and Y are sets of attributes in a relation R
- X → Y means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b1</td>
<td>c1</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c2</td>
</tr>
<tr>
<td>a</td>
<td>b1</td>
<td>c2</td>
</tr>
<tr>
<td>a</td>
<td>b2</td>
<td>c1</td>
</tr>
</tbody>
</table>

Must be in R too
MVD examples

Student(SID, CID, club)

- SID → CID

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If X → Y, then X → attr(R) – X – Y
- MVD augmentation:
 If X → Y and V ⊆ W, then XW → YV
- MVD transitivity:
 If X → Y and Y → Z, then X → Z – Y
- Replication (FD is MVD):
 If X → Y, then XW → YV
- Coalescence:
 If X → Y and Z ⊆ Y and there is some W disjoint from Y such that W → Z, then X → Z

An elegant solution: chase

- Given a set of FD’s and MVD’s D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypotheses of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
</tr>
</tbody>
</table>

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
</tr>
</tbody>
</table>

In general, both new tuples and new equalities may be generated.

Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
</tr>
</tbody>
</table>

$b_1 = b_2$
4NF

A relation R is in Fourth Normal Form (4NF) if
- For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
- That is, all FD’s and MVD’s follow from “key \rightarrow other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

4NF is stronger than BCNF
- Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains attributes not in X or Y)
- Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

<table>
<thead>
<tr>
<th>ID</th>
<th>SId</th>
<th>CID</th>
<th>club</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>123</td>
<td>CPS196</td>
<td>ballet</td>
</tr>
<tr>
<td>142</td>
<td>123</td>
<td>CPS114</td>
<td>sumo</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
<td>CPS196</td>
<td>chess</td>
</tr>
<tr>
<td>123</td>
<td>123</td>
<td>CPS196</td>
<td>golf</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
3NF, BCNF, 4NF, and beyond

<table>
<thead>
<tr>
<th>Anomaly/normal form</th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose FD’s?</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Redundancy due to FD’s</td>
<td>Possible</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy due to MVD’s</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
</tr>
</tbody>
</table>

- **Of historical interests**
 - 1NF: All column values must be atomic
 - 2NF: There is no partial functional dependency (a non-trivial FD $X \rightarrow A$ where X is a proper subset of some key)

Summary

- Philosophy behind BCNF, 4NF:

 Data should depend on the key, the whole key, and nothing but the key!

- Philosophy behind 3NF:

 … But not at the expense of more expensive constraint enforcement!