Query Optimization

CPS 196.3
Introduction to Database Systems

Query optimization

- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra

- Apply relational algebra equivalences
- Join reordering: × and ⊆ are associative and commutative (except column ordering, but that is unimportant)

More relational algebra equivalences

- Convert $\sigma_p \times$ to/from σ_p:
 - $(\sigma_p R) \times S = R \times (\sigma_p S)$
- Merge/split σ's:
 - $(\sigma_p \land \sigma_q R) = \sigma_{p \land q} R$
- Merge/split π's:
 - $(\pi_L \sigma_p R) = \pi_L R$, where $L_1 \subseteq L_2$
- Push down/pull up σ:
 - $(\sigma_p \quad \pi R) = \sigma_p (\pi (\pi (L \quad \sigma R}))$
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

Relational query rewrite example

Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why? Reduce the size of intermediate results
 - Why not? May be expensive; maybe joins filter better
- Join smaller relations first, and avoid cross product
 - Why? Reduce the size of intermediate results
 - Why not? Size depends on join selectivity too
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)
SQL query rewrite

- More complicated—subqueries and views divide a query into nested “blocks”
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- Unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';
 - New subquery is inefficient (computes enrollment for all courses)
 - Suppose a CPS class is empty?

“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%' AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
 CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course
 WHERE Magic.CID = Enroll.CID AND min_enroll > Magic.cnt
 AND title LIKE 'CPS%';
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks

Cost estimation

Physical plan example:

- PROJECT (title)
- MERGE-JOIN (CID)
- MERGE-JOIN (LID)
- SCAN (Course)
- FILTER (name = 'Bart')
- SORT (SST)
- SCAN (Enroll)

- We have: cost estimation for each operator
 - Example: SORT(CID) takes 2 × B(input)
 - But what is B(input)?
- We need: size of intermediate results
Selections with equality predicates

- \(Q: \sigma_{A = v} R \)
- Suppose the following information is available
 - Size of \(R \): \(|R| \)
 - Number of distinct \(A \) values in \(R \): \(|\pi_A R| \)
- Assumptions
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformly distributed over all \(R.A \) values
- \(|Q| \approx |R| / |\pi_A R| \)
 - Selectivity factor of \((A = v) \) is \(1 / |\pi_A R| \)

Negated and disjunctive predicates

- \(Q: \sigma_{A \neq v} R \)
 - \(|Q| \approx |R| \cdot (1 - 1 / |\pi_A R|) \)
 - Selectivity factor of \(\neg p \) is \(1 - \) selectivity factor of \(p \)
- \(Q: \sigma_{A = a \text{ or } B = v} R \)
 - \(|Q| \approx |R| \cdot (1 / |\pi_A R|) + 1 / |\pi_B R|) \)
 - Not Tuples satisfying \((A = a) \) and \((B = v) \) are counted twice
 - \(|Q| \approx |R| \cdot (1 - (1 - 1 / |\pi_A R|) \cdot (1 - 1 / |\pi_B R|)) \)
 - Intuition: \((A = a) \) or \((B = v) \) is equivalent to \(\neg (\neg (A = a) \text{ AND } \neg (B = v)) \)

Conjunctive predicates

- \(Q: \sigma_{A > v} R \)
 - Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3 \)
 - With more information
 - Largest \(RA \) value: \(\text{high}(R.A) \)
 - Smallest \(RA \) value: \(\text{low}(R.A) \)
 - \(|Q| \approx |R| \cdot (\text{high}(R.A) - v) / (\text{high}(R.A) - \text{low}(R.A)) \)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- \(Q: R(A, B) \bowtie S(A, C) \)
- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S| \) then \(\pi_A R \subseteq \pi_A S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|) \)
 - Selectivity factor of \(RA = SA \) is \(1 / \max(|\pi_A R|, |\pi_A S|) \)

Range predicates

- \(Q: \sigma_{A \geq v} R \)

Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
Multiway equi-join (cont’d)

Q: \(R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)

- Start with the product of relation sizes
 \(|R| \cdot |S| \cdot |T| \)
- Reduce the total size by the selectivity factor of each join predicate
 \[R.B = S.B \implies 1/\max(|\pi_B R|, |\pi_B S|) \]
 \[S.C = T.C \implies 1/\max(|\pi_C S|, |\pi_C T|) \]
 \[|Q| \approx (|R| \cdot |S| \cdot |T|)/\]
 \[\left(\max\{|\pi_B R|, |\pi_B S|\} \cdot \max\{|\pi_C S|, |\pi_C T|\} \right) \]

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 \[\text{SELECT * FROM Student WHERE GPA > 3.9} \]
 \[\text{SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9} \]
- Not covered: better estimation using histograms

Search for the best plan

- Huge search space
- “Bushy” plan example:

- Just considering different join orders, there are close to \((n-1)! \cdot 4^{n-1}\) bushy plans for \(R_1 \bowtie \cdots \bowtie R_n\)
 \[30240 \text{ for } n = 6 \]
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators

Left-deep plans

- Heuristic: consider only “left-deep” plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for \(R_1 \bowtie \cdots \bowtie R_n\)?
 - Significantly fewer, but still lots— \(n! \) (720 for \(n = 6 \))

A greedy algorithm

- \(S_1, \ldots, S_n\)
 - Say selections have been pushed down; i.e., \(S_j = \sigma_{p_j} R_j\)
- Start with the pair \(S_j, S_j\) with the smallest estimated size for \(S_j \bowtie S_j\)
- Repeat until no relation is left:
 Pick \(S_j\) from the remaining relations such that the join of \(S_j\) and the current result yields an intermediate result of the smallest size

A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - …
 - Pass \(k \): Find the best \(k \)-table plans (for each combination of \(k \) tables) by combining two smaller best plans found in previous passes
 - …
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…
The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, \text{GROUP BY}, \text{ORDER BY}, etc.)!

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - Typically one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach