Filtering Tricks and Extensions

Ron Parr
CPS 1/2996

What we know so far

- Kalman filter
 - Assumes linear-Gaussian model
 - Exact, closed form solution given assumptions
- Particle filter
 - No modeling assumptions
 - Uses particles (simulation) to model distribution
 - May require many particles in some cases (= slow)

What if dynamics aren't linear?

- Kalman filter assumes:
 - $x_{k+1} = f(x_k) + \text{noise}$
 - f assumed linear

- For non-linear f
 - $x_{k+1} = x_k + f'(x_k) \Delta u + \text{noise}$
 - First order linear approximation

Making it work

- Kalman filter linear update: Ax
- Extended kalman filter update: $A' \Delta x$
- A' is the jacobian of the (non-linear) transition dynamics

Making it work II

- Must recompute Jacobian at every time step
- Derivatives taken at current mean
- Δx must also be computed dynamically
- May also need to linearize observation model

EKF Pros and Cons

- Pros:
 - Works well for small step sizes
 - Computationally tractable in most cases
 - Distribution remains bounded size
- Cons:
 - Gets into trouble for large step sizes
 - Requires real time differentiation
Unscented Filter

- **Idea:**
 - Still represent distribution as a Gaussian
 - Use simulation to estimate parameters of Gaussian

- **Implementation:**
 - Pick a set of points with sample mean and sample covariance equal to current Gaussian (e.g., points evenly spaced at 1 SD contour)
 - Push these points through the particle filter equations
 - Compute a new sample mean and covariance for the weighted, post-simulation points

Surprising Facts about the UKF

- It stinks less than the EKF 😅
- Mean and covariance at least as good as (actually better than) EKF - accurate up to second order
- No real time differentiation
- Fast and easy to implement

Why the UKF isn’t a silver bullet

- Still assumes a Gaussian representation
- Can lead to (increasingly) bad approximations if distribution is not Gaussian
- …though probably no worse than EKF

Rao Blackwellised Particle Filter

- **Idea:**
 - Sometimes it is possible to do parts of the filtering equations exactly, but not all
 - Sample the hard parts (particle filter)
 - Do the easy parts exactly (Kalman filter, or other method)

- **Example application**
 - Switching Kalman filter
 - Discrete variable selects from a set of possible linear
 - dynamics at each time step
 - Mixture Kalman filter
 - Sample discrete variables
 - Do exact KF computations for continuous variables

Mixture Kalman Filter Implementation

- Distribution is a set of particles, where each particle is a Gaussian distribution
- Can combine with EKF, UKF, etc.
- Efficiency, accuracy depend upon
 - Number of particles
 - Size of sampled state space
 - Concentration of particles
 - Approximation quality (EKF, UKF)

Summary

- **Kalman filter**
 - Linear/Gaussian model
 - Closed form solution
 - Exact when assumptions met

- **Extended Kalman Filter**
 - Nonlinearized Gaussian model
 - Closed form solution
 - Gaussian approximation to non-Gaussian reality

- **Unscented Filter**
 - Arbitrary model (almost)
 - Sample based approximation (for careful selection of sample points)
 - Fits Gaussian to samples

- **Particle Filter**
 - Arbitrary model (almost)
 - Sample based approximation
 - Quality depends upon size of particles, distribution

- **Rao-Blackwellized Particle Filter**
 - Arbitrary model (almost)
 - Combines sampling with closed form solution
 - Mixture of distributions approximates improves on particle filter accuracy