Particle Filters

Ron Parr
CPS 1/296

Outline

- Problem: Track state over time
 - State = position, orientation of robot (condition of patient, position of airplane, status of factory, etc.)
- Challenge: State is not observed directly
- Solution: Tracking using a model
 - Exact
 - Approximate (Particle filter)

Example

- Robot is monitoring door to the AI lab
- D = variable for status of door (True = open)
- Initially we will ignore observations
- Define Markov model for behavior of door:

 \[
 P(D_{t+1} | D_t) = 0.8 \\
 P(D_{t+1} | \overline{D}_t) = 0.3
 \]

Problem

Suppose we believe the door was closed with prob. 0.7 at time t.

What is the prob. that it will be open at time $t+1$?

\[
P(D_{t+1} | D_t) = 0.8 \\
P(D_{t+1} | \overline{D}_t) = 0.3
\]

Staying open \quad Switching from closed to open

\[
P(D_{t+1} | D_t) = P(D_{t+1} | D_t)P(D_t) + P(D_{t+1} | \overline{D}_t)P(\overline{D}_t) \\
= 0.8 \times 0.7 + 0.3 \times 0.3 = 0.65
\]

Generalizing

- Suppose states are not binary:
 \[
 p(S_{t+1}) = \sum_{S_t} p(S_{t+1} | S_t) p(S_t)
 \]
- Suppose states are continuous
 \[
 p(S_{t+1}) = \int p(S_{t+1} | S_t) p(S_t) dS_t
 \]
- Issue: For large or continuous state spaces this may be hard to deal with exactly

Monte Carlo Approximation

(Sampling)

- We can approximate a nasty integral by sampling and counting:
 \[
 p(S_{t+1}) = \int p(S_{t+1} | S_t) p(S_t) dS_t
 \]
- Repeat n times:
 - Draw sample from $p(S_t)$
 - Simulate transition to S_{t+1}
- Count proportion of states for each value of S_{t+1}
Example

- Pick n=1000
 - 700 door open samples
 - 300 door closed samples
- For each sample generate a next state
 - For open samples use prob 0.8 for next state open
 - For closed samples use prob 0.3 for next state open
- Count no. of open and closed next states
- Can prove that in limit of large n, our count will equal true probability (0.65)

Example Revisited

- D = Door status
- O = Robot's observation of door status
- Observations may not be completely reliable!

\[P(D_{n+1} | D_n) = 0.8 \]
\[P(D_{n+1} | \overline{D}_n) = 0.3 \]
\[P(O | D) = 0.6 \]
\[P(O | \overline{D}) = 0.2 \]

Modified Sampling

- Problem: How do we adjust sampling to handle evidence?
- Solution: Weight each sample by the probability of the observations
- Called importance sampling, or likelihood weighting
- Does the right thing for large n

Example with evidence

- Suppose we observe door closed at t+1
- Pick n=1000
 - 700 door open samples
 - 300 door closed samples
- For each sample generate a next state
 - For open samples use prob 0.8 for next state open
 - For closed samples use prob 0.3 for next state open
 - If next state is open, weight by 0.4
 - If next state is closed, weight by 0.8
- Compute weighted sum of no. of open and closed states

Problems with IS (LW)

- Sequential importance sampling (SIS) does the right thing for the limit of large numbers of samples
- Problems for finite numbers of samples:
 - Effective sample size drops over time
 - Unlikely events are only small fraction of sample population
 - Eventually
 - Something unlikely happens
 - A sequence of individually likely events has the effect of a single unlikely event
 - Estimates become unreliable bit based on a small no. of samples

Solution: SISR (PF)

- Maintain n samples for each time step
- Repeat n times:
 - Draw sample from p(S_n)
 (according to current weights)
 - Simulate transition to S_{n+1}
 - Weight samples by evidence
- Count proportion of states for each value of S_{n+1}
Monte Carlo Approximation (Particle Filter)

Robot Localization
- Particle filters combine:
 - A model of state change
 - A model of sensor readings
- To track objects with hidden state over time
- Robot application:
 - Hidden state: Robot position, orientation
 - State change model: Robot motion model
 - Sensor model: Laser range finder error model
- Note: Robot is tracking itself!

Main Loop
- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Robot States
- Robot has X, Y, Z, \(\theta \)
- Usually ignore z
 - assume floors are flat
 - assume robot stays on one floor
- Form of samples
 - \((X_i, Y_i, \theta_i, p_i) \)
 - \(\sum p_i = 1 \)

Main Loop
- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Sampling Robot States
- Need to generate n new samples from our previous set of n samples
- Draw n new robot states with replacement
 - for \(i = 1 \) to \(n \)
 - \(r = \text{rand}[0...1] \)
 - \(\text{temp} = 0 \)
 - while(\text{temp} < r)
 - \(\text{temp} = \text{temp + samples[i].p} \)
 - \(k = \text{int}\) \(\text{temp} \)
 - \(\text{newsamples}[i] = \text{samples}[k-1] \) (off this should copy)
- \(\text{samples} = \text{newsamples} \)
Main Loop

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Action Model

- How far has the robot traveled?
- What does the odometer tell us?

Actual path was a closed loop on the second floor!

Odometer Model

- Odometer is:
 - Relatively accurate model of wheel turn
 - Very inaccurate model of actual movement
- Actual position = odometer X, Y, θ + random noise

Simulation Implementation

- Start with odometer readings
- Add linear correction factor
 - \(X = a_x X + b_x \)
 - \(Y = a_y Y + b_y \)
 - \(\theta = a_\theta \theta + b_\theta \)
 - Linear correction (determined experimentally)
- Add noise from the normal distribution
 - \(X = X + N(0, \sigma_x) \)
 - \(Y = Y + N(0, \sigma_y) \)
 - \(\theta = \theta + N(0, \sigma_\theta) \)
 - \(N(\mu, \sigma) \) returns random noise from normal distribution with mean \(\mu \) and standard deviation \(\sigma \) (standard deviation determined experimentally)

Main Loop

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Internal Map Representation

Table, chair legs

Closet

Printers

Recycling bins

LSRC Second Floor
Laser Error Model

- Laser measures distance at 180 one degree increments in front of the robot (height is fixed)
- Laser rangefinder errors also have a normal distribution

![Distance from closest occupied square to endpoint of laser cast](image)

Laser Error Model Contd.

- Probability of error in measurement k for sample i (normal)
 \[p_{ik} (x_i) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x_i^2}{2\sigma^2}} \]
- x_i is distance of laser endpoint to closest obstacle
- σ is standard deviation in this measurement (estimated experimentally), usually a few cm.

Main Loop

- Sample n robot states
- For each state
 - Simulate next state (action model)
 - Weight states (observation model)
 - Normalize
- Repeat

Best Guess of Position

- Recover best guess of true position from weighted average of particle positions:
 \[\bar{x} = \sum_{i} sample[i].x \times sample[i].p \]

How do we use this?