CPS216: Data-Intensive Computing Systems

Query Execution (Sort and Join operators)

Shivnath Babu
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Nested Loop Join (NLJ)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cat</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>dog</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>bat</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>rat</td>
<td></td>
</tr>
</tbody>
</table>

- **NLJ (conceptually)**
 - for each \(r \in R1 \) do
 - for each \(s \in R2 \) do
 - if \(r.C = s.C \) then output \(r, s \) pair
Nested Loop Join (contd.)

- Tuple-based
- Block-based
- Asymmetric
Implementing Operators

- Basic algorithm
 - Scan-based (e.g., NLJ)
 - Sort-based
 - Using existing indexes
 - Hash-based (building an index on the fly)
- Memory management
 - Tradeoff between memory and #I/Os
- Parallel processing
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Operator Cost Model

- **Simplest**: Count # of disk blocks read and written during operator execution
- Extends to query plans
 - Cost of query plan = Sum of operator costs
- Caution: Ignoring CPU costs
Assumptions

• Single-processor-single-disk machine
 – Will consider parallelism later
• Ignore cost of writing out result
 – Output size is independent of operator implementation
• Ignore # accesses to index blocks
Parameters used in Cost Model

\[B(R) = \# \text{ blocks storing } R \text{ tuples} \]
\[T(R) = \# \text{ tuples in } R \]
\[V(R,A) = \# \text{ distinct values of attr } A \text{ in } R \]
\[M = \# \text{ memory blocks available} \]
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Notions of clustering

• Clustered file organization

 R1 R2 S1 S2 R3 R4 S3 S4

• Clustered relation

 R1 R2 R3 R4 R5 R5 R7 R8

• Clustering index
Clustering Index

Tuples with a given value of the search key packed in as few blocks as possible
Examples

T(R) = 10,000
B(R) = 200

If R is clustered, then \# R tuples per block = 10,000/200 = 50

Let V(R,A) = 40

⇒ If I is a clustering index on R.A, then \# IOs to access \(\sigma_{R.A = "a"}(R) = 250/50 = 5\)

⇒ If I is a non-clustering index on R.A, then \# IOs to access \(\sigma_{R.A = "a"}(R) = 250 \ (> B(R))\)
Operator Classes

<table>
<thead>
<tr>
<th></th>
<th>Tuple-at-a-time</th>
<th>Full-relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unary</td>
<td>Select</td>
<td>Sort</td>
</tr>
<tr>
<td>Binary</td>
<td></td>
<td>Difference</td>
</tr>
</tbody>
</table>
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing
Implementing Tuple-at-a-time Operators

• One pass algorithm:
 – Scan
 – Process tuples one by one
 – Write output

• Cost = B(R)
 – Remember: Cost = # IOs, and we ignore the cost to write output
Implementing a Full-Relation Operator, Ex: Sort

- Suppose $T(R) \times \text{tupleSize}(R) \leq M \times |B(R)|$
- Read R completely into memory
- Sort
- Write output
- Cost = $B(R)$
Implementing a Full-Relation Operator, Ex: Sort

- Suppose R won’t fit within M blocks
- Consider a two-pass algorithm for Sort; generalizes to a multi-pass algorithm
- Read R into memory in M-sized chunks
- Sort each chunk in memory and write out to disk as a sorted sublist
- Merge all sorted sublists
- Write output
Two-phase Sort: Phase 1

Suppose $B(R) = 1000$, R is clustered, and $M = 100$

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

Memory

<table>
<thead>
<tr>
<th>1</th>
<th>.....</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>.....</td>
<td>200</td>
</tr>
<tr>
<td>201</td>
<td>.....</td>
<td>300</td>
</tr>
</tbody>
</table>

Sorted Sublists

<table>
<thead>
<tr>
<th>801</th>
<th>.....</th>
<th>900</th>
</tr>
</thead>
<tbody>
<tr>
<td>901</td>
<td>.....</td>
<td>1000</td>
</tr>
</tbody>
</table>
Two-phase Sort: Phase 2

Sorted Sublists

Memory

Sorted R
Analysis of Two-Phase Sort

• Cost = 3xB(R) if R is clustered,
 = B(R) + 2B(R’) otherwise
• Memory requirement M >= B(R)^{1/2}
Duplicate Elimination

- Suppose $B(R) \leq M$ and R is clustered
- Use an in-memory index structure
- Cost = $B(R)$
- Can we do with less memory?
 - $B(\delta(R)) \leq M$
 - Aggregation is similar to duplicate elimination
Duplicate Elimination Based on Sorting

- Sort, then eliminate duplicates
- Cost = Cost of sorting + B(R)
- Can we reduce cost?
 - Eliminate duplicates during the merge phase
Back to Nested Loop Join (NLJ)

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cat</td>
</tr>
<tr>
<td>40</td>
<td>dog</td>
</tr>
<tr>
<td>15</td>
<td>bat</td>
</tr>
<tr>
<td>20</td>
<td>rat</td>
</tr>
</tbody>
</table>

- NLJ (conceptually)
 for each \(r \in R \) do
 for each \(s \in S \) do
 if \(r.C = s.C \) then output \(r,s \) pair
Analysis of Tuple-based NLJ

- Cost with R as outer = $T(R) + T(R) \times T(S)$
- Cost with S as outer = $T(S) + T(R) \times T(S)$
- $M \geq 2$
Block-based NLJ

• Suppose R is outer
 – Loop: Get the next M-1 R blocks into memory
 – Join these with each block of S
• B(R) + (B(R)/M-1) x B(S)
• What if S is outer?
 – B(S) + (B(S)/M-1) x B(R)
Let us work out an NLJ Example

- Relations are **not** clustered
- $T(R1) = 10,000 \quad T(R2) = 5,000$
- 10 tuples/block for $R1$; and for $R2$
- $M = 101$ blocks

Tuple-based NLJ Cost: for each $R1$ tuple:

$$[\text{Read tuple} + \text{Read R2}]$$

Total $= 10,000 \times (1 + 5000) = 50,010,000$ IOs
Can we do better when R,S are not clustered?

Use our memory

1. Read 100 blocks worth of R1 tuples
2. Read all of R2 (1 block at a time) + join
3. Repeat until done
Cost: for each R1 chunk:

Read chunk: 1000 IOs

Read R2: 5000 IOs

Total/chunk = 6000

Total = \frac{10,000}{1,000} \times 6000 = 60,000 IOs

[Vs. 50,010,000!]
• Can we do better?

_reverse join order: R2 \Join R1

Total = \frac{5000 \times (1000 + 10,000)}{1000} = 5 \times 11,000 = 55,000 IOs

[Vs. 60,000]
Example contd. NLJ R2 \bowtie R1

- Now suppose relations are clustered

Cost

For each R2 chunk:

- Read chunk: 100 IOs
- Read R1: 1000 IOs

Total/chunk = 1,100

Total = 5 chunks x 1,100 = 5,500 IOs

[Vs. 55,000]
Joins with Sorting

• **Sort-Merge Join** (conceptually)

 1. if R1 and R2 not sorted, sort them
 2. i $\leftarrow 1$; j $\leftarrow 1$;

 While $i \leq T(R1) \land j \leq T(R2)$ do

 if $R1\{i\}.C = R2\{j\}.C$ then **OutputTuples**
 else if $R1\{i\}.C > R2\{j\}.C$ then $j \leftarrow j+1$
 else if $R1\{i\}.C < R2\{j\}.C$ then $i \leftarrow i+1$
Procedure **Output-Tuples**

While \((R1\{ i \}.C = R2\{ j \}.C) \land (i \leq T(R1))\) do

\[
\begin{align*}
&\text{[} jj \leftarrow j; \\
&\text{while (} R1\{ i \}.C = R2\{ jj \}.C \land (jj \leq T(R2))\text{ do} \\
&\quad \text{[output pair } R1\{ i \}, R2\{ jj \}; \\
&\quad \quad jj \leftarrow jj+1 \text{]} \\
&i \leftarrow i+1 \text{]}
\end{align*}
\]
Example

<table>
<thead>
<tr>
<th>i</th>
<th>R1{i}.C</th>
<th>R2{j}.C</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>7</td>
</tr>
</tbody>
</table>
Block-based Sort-Merge Join

• Block-based sort
• Block-based merge
Two-phase Sort: Phase 1

Suppose $B(R) = 1000$ and $M = 100$

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>100</td>
</tr>
</tbody>
</table>

Memory

Sorted Sublists

```
1
101
201
801
901
```

```
.....
.....
.....
.....
.....
```

```
100
200
300
900
1000
```
Two-phase Sort: Phase 2

Sorted Sublists

Memory

Sorted R

100
200
300
900
1000

1
101
201
801
901

1
2
3
4
5
6
7
8
9
10

1
2
3
4
5

999
1000
Sort-Merge Join

Apply our merge algorithm

Sorted R1

Sorted R2

R1

R2

sorted sublists
Analysis of Sort-Merge Join

- Cost = 5 \times (B(R) + B(S))
- Memory requirement:
 \[M \geq \left(\max(B(R), B(S)) \right)^{1/2} \]
Continuing with our Example

R1, R2 clustered, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500 = 7,500 IOs

But: NLJ cost = 5,500
So merge join does not pay off!
However …

- NLJ cost $= B(R) + B(R)B(S)/M-1 = O(B(R)B(S))$ [Quadratic]
- Sort-merge join cost $= 5 \times (B(R) + B(S)) = O(B(R) + B(S))$ [Linear]
Can we Improve Sort-Merge Join?

R1 \rightarrow \{ \text{sorted sublists} \} \rightarrow \text{Sorted R1} \\
\{ \text{sorted sublists} \} \rightarrow \text{Sorted R2} \\
\text{Apply our merge algorithm}

Do we need to create the sorted R1, R2?
A more “Efficient” Sort-Merge Join

R1

R2

sorted sublists

Apply our merge algorithm
Analysis of the “Efficient” Sort-Merge Join

• Cost = 3 x (B(R) + B(S))
 [Vs. 5 x (B(R) + B(S))]

• Memory requirement:
 \[M \geq (B(R) + B(S))^{1/2} \]
 [Vs. \(M \geq (\max(B(R), B(S)))^{1/2} \)]

Another catch with the more “Efficient” version: Higher chances of thrashing!
Cost of “Efficient” Sort-Merge join:

Cost = Read R1 + Write R1 into sublists
 + Read R2 + Write R2 into sublists
 + Read R1 and R2 sublists for Join
 = 2000 + 1000 + 1500 = 4500

[Vs. 7500]
Memory requirements in our Example

\[B(R1) = 1000 \text{ blocks, } 1000^{1/2} = 31.62 \]
\[B(R2) = 500 \text{ blocks, } 500^{1/2} = 22.36 \]
\[B(R1) + B(R2) = 1500, \ 1500^{1/2} = 38.7 \]

\[M > 32 \text{ buffers for simple sort-merge join} \]
\[M > 39 \text{ buffers for efficient sort-merge join} \]
Joins Using Existing Indexes

Indexed NLJ (conceptually)

- for each \(r \in R \) do
 - for each \(s \in S \) that matches \(\text{probe}(I, r.C) \) do
 - output \(r, s \) pair

Tables

R

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>10</td>
</tr>
<tr>
<td>a</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>30</td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>cat</td>
</tr>
<tr>
<td>40</td>
<td>dog</td>
</tr>
<tr>
<td>15</td>
<td>bat</td>
</tr>
<tr>
<td>20</td>
<td>rat</td>
</tr>
</tbody>
</table>

Index I on S.C
Continuing with our Running Example

• Assume R1.C index exists; 2 levels
• Assume R2 clustered, unordered

• Assume R1.C index fits in memory
Cost: R2 Reads: 500 IOs

for each R2 tuple:
 - probe index - free
 - if match, read R1 tuple

g# R1 Reads depends on:
 - # matching tuples
 - clustering index or not
What is expected # of matching tuples?

(a) say R1.C is key, R2.C is foreign key
then expected = 1 tuple

(b) say V(R1,C) = 5000, T(R1) = 10,000
with uniform assumption
expect = 10,000/5,000 = 2
What is expected # of matching tuples?

(c) Say $\text{DOM}(R1, C) = 1,000,000$

$T(R1) = 10,000$

with assumption of uniform distribution in domain

$\text{Expected} = \frac{10,000}{1,000,000} = \frac{1}{100}$ tuples
Total cost with Index Join with a Non-Clustering Index

(a) Total cost = 500 + 5000(1) = 5,500

(b) Total cost = 500 + 5000(2) = 10,500

(c) Total cost = 500 + 5000(1/100) = 550

Will any of these change if we have a clustering index?
What if index does not fit in memory?

Example: say R1.C index is 201 blocks

- Keep root + 99 leaf nodes in memory
- Expected cost of each index access is
 \[E = \left(0 \frac{99}{200}\right) + \left(1 \frac{101}{200}\right) \approx 0.5 \]
Total cost (including Index Probes)

\[= 500 + 5000 \text{ [Probe + Get Records]}\]
\[= 500 + 5000 \times 0.5 + 2\]
\[= 500 + 12,500 = 13,000 \text{ (Case b)}\]

For Case (c):
\[= 500 + 5000 \times [0.5 \times 1 + (1/100) \times 1]\]
\[= 500 + 2500 + 50 = 3050 \text{ IOs}\]
Block-Based NLJ Vs. Indexed NLJ

- Wrte #joining records
- Wrte index clustering

Join cost

Plot graphs for Block NLJ and Indexed NLJ for clustering and non-clustering indexes

Join selectivity
Sort-Merge Join with Indexes

• Can avoid sorting
• Zig-zag join
So far

<table>
<thead>
<tr>
<th>Not Clustered</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NLJ R2 ⋈ R1</td>
<td>55,000 (best)</td>
<td></td>
</tr>
<tr>
<td>Merge Join</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sort+ Merge Join</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1.C Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2.C Index</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clustered</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NLJ R2 ⋈ R1</td>
<td>5500</td>
<td></td>
</tr>
<tr>
<td>Merge join</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Sort+Merge Join</td>
<td>7500 → 4500</td>
<td></td>
</tr>
<tr>
<td>R1.C Index</td>
<td>5500, 3050, 550</td>
<td></td>
</tr>
<tr>
<td>R2.C Index</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building Indexes on the fly for Joins

• Hash join (conceptual)
 – Hash function h, range $1 \rightarrow k$
 – Buckets for R1: G_1, G_2, \ldots, G_k
 – Buckets for R2: H_1, H_2, \ldots, H_k

Algorithm

(1) Hash R1 tuples into G_1--G_k
(2) Hash R2 tuples into H_1--H_k
(3) For $i = 1$ to k do
 Match tuples in G_i, H_i buckets
Example Continued: Hash Join

- R1, R2 contiguous
 → Use 100 buckets
 → Read R1, hash, + write buckets

\[
\begin{array}{c}
\text{R1} \\
\end{array}
\]
-> Same for R2
-> Read one R1 bucket; build memory hash table
 [R1 is called the **build** relation of the hash join]
-> Read corresponding R2 bucket + hash probe
 [R2 is called the **probe** relation of the hash join]

```
  R1  ───>  Memory  ───>  R2
  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]
  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]
  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]
  [ ]  [ ]  [ ]  [ ]  [ ]  [ ]
```

Then repeat for all buckets
Cost:

“Bucketize:” Read R1 + write
Read R2 + write

Join: Read R1, R2

Total cost = 3 \times [1000+500] = 4500
Minimum Memory Requirements

Size of R1 bucket = \((x/k) \)

\[k = \text{number of buckets} \ (k = M-1) \]
\[x = \text{number of R1 blocks} \]

So...

\[\frac{x}{k} \leq k \Rightarrow k \geq \sqrt{x} \Rightarrow M > \sqrt{x} \]

Actually, \(M > \sqrt{\min(B(R),B(S))} \)

[Vs. \(M > \sqrt{B(R)+B(S)} \) for Sort-Merge Join]
Trick: keep some buckets in memory

E.g., k’=33 R1 buckets = 31 blocks
keep 2 in memory

Memory use:
- G1 31 buffers
- G2 31 buffers
- Output 33-2 buffers
- R1 input 1
Total 94 buffers
6 buffers to spare!!

called Hybrid Hash-Join
Next: Bucketize R2

- R2 buckets = $\frac{500}{33} = 16$ blocks
- Two of the R2 buckets joined immediately with G1, G2
Finally: Join remaining buckets

– for each bucket pair:
 • read one of the buckets into memory
 • join with second bucket
Cost

- Bucketize R1 = 1000 + 31 \times 31 = 1961

- To bucketize R2, only write 31 buckets:
 so, cost = 500 + 31 \times 16 = 996

- To compare join (2 buckets already done)
 read 31 \times 31 + 31 \times 16 = 1457

Total cost = 1961 + 996 + 1457 = 4414
How many Buckets in Memory?

OR ...

See textbook for an interesting answer ...
Another hash join trick:

- Only write into buckets <val,ptr> pairs
- When we get a match in join phase, must fetch tuples
• To illustrate cost computation, assume:
 – 100 <val, ptr> pairs/block
 – expected number of result tuples is 100
• Build hash table for R2 in memory
 5000 tuples → 5000/100 = 50 blocks
• Read R1 and match
• Read ~ 100 R2 tuples

\[
\text{Total cost} = \begin{align*}
\text{Read R2:} & \quad 500 \\
\text{Read R1:} & \quad 1000 \\
\text{Get tuples:} & \quad 100 \\
\hline
1600
\end{align*}
\]
So far:

- NLJ: 5500
- Merge join: 1500
- Sort+merge joint: 7500
- R1.C index: 5500 → 550
- R2.C index: _____
- Build R.C index: _____
- Build S.C index: _____
- Hash join: 4500
 - with trick, R1 first: 4414
 - with trick, R2 first: _____
- Hash join, pointers: 1600
Hash-based Vs. Sort-based Joins

• Some similarities (see textbook), some dissimilarities
• Non-equi joins
• Memory requirement
• Sort order may be useful later
Summary

• **NLJ** ok for “small” relations (relative to memory size)
• For equi-join, where relations not sorted and no indexes exist, **Hybrid Hash Join** usually best
Summary (contd.)

• **Sort-Merge Join** good for non-equi-join (e.g., R1.C > R2.C)
• If relations already sorted, use **Merge Join**
• If index exists, it *could* be useful
 – Depends on expected result size and index clustering
• Join techniques apply to Union, Intersection, Difference
Buffer Management

- DBMS Buffer Manager

- May control memory directly (i.e., does not allocate from virtual memory controlled by OS)
Buffer Replacement Policies

- Least Recently Used (LRU)
- Second-chance
- Most Recently Used (MRU)
- FIFO
Interaction between Operators and Buffer Management

• Memory (our M parameter) may change while an operator is running

• Some operators can take advantage of specific buffer replacement policies
 – E.g., Rocking for Block-based NLJ
Join Strategies for Parallel Processors

- May cover later if time permits
- We will see one example: Hash Join
Roadmap

• A simple operator: Nested Loop Join
• Preliminaries
 – Cost model
 – Clustering
 – Operator classes
• Operator implementation (with examples from joins)
 – Scan-based
 – Sort-based
 – Using existing indexes
 – Hash-based
• Buffer Management
• Parallel Processing