Randomized Algorithms

Coupon collector problem: n different coupons, sampled with replacement from uniform distribution.

Q: How many coupons before one of each kind shows up?

Define $X_i = \#$ of rounds between ith and $(i+1)$st coupon

$X_i \sim \text{Geo} \left(\frac{n-i}{n} \right) = \text{Geo} \left(1 - \frac{i}{n} \right)$

$E(X_i) = \frac{n}{n-i}$.

$\Rightarrow E \left(\sum_{i=0}^{n-1} X_i \right) = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} \frac{n-i}{n} = n \log n = \Theta(n \log n)$.

Linearity of expectation: For any set of random variables X_1, \ldots, X_n (not necessarily independent!!)

$E \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} E[X_i]$

Balls and bins

Suppose we throw n balls uniformly at random into n bins.

Let X_i: # of balls in the ith bin

$E[X_i] = 1 \quad \forall \ i$ — not very interesting

Let $X = \max_i X_i$

What is $E[X]$?

For any i, $P[X_i \geq k] \leq \left(\frac{n}{i} \right) \frac{1}{n} \leq \left(\frac{ne}{k} \right) \frac{1}{n} = \left(\frac{x}{k} \right)$

$P[X_i \geq \frac{e \ln n}{\ln \ln n}] \leq \left(\ln \ln n \right)^{-c} \text{ for some } c > 0$.
\[\Pr \left[X \geq \frac{e^{\ln n}}{\ln \ln n} \right] \leq \left(\frac{\ln \ln n}{\ln n} \right)^{\ln \ln n} \leq \frac{1}{n} \]

Union Bound
\[\Pr \left[\bigcup_i E_i \right] \leq \sum_i \Pr \left[E_i \right] \]

Using union bound,
\[\Pr \left(X \geq \frac{e^{\ln n}}{\ln \ln n} \right) \leq \frac{1}{n} \]

\[\mathbb{E}[X] \leq \left(1 - \frac{1}{n} \right) \frac{e^{\ln n}}{\ln \ln n} + \frac{1}{n} \cdot n = O\left(\frac{\ln n}{\ln \ln n} \right) \] (also called a tail bound)

We need a tail bound to obtain a bound on the expectation. Often we want the reverse: use expectation to obtain a tail bound.

Markov's Inequality: \[\Pr \left[X \geq t \right] \leq \mathbb{E}[X] / t \text{ for } X \geq 0. \]

Proof: \[\mathbb{E}[X] \geq \Pr \left[X \geq t \right] \cdot t + \Pr \left[X < t \right] \cdot 0 \]

Often too weak by itself (e.g. in balls in bins, gives probability bound of \(\ln n / \ln \ln n \) which is too weak for union bound) but useful for proving stronger inequalities.

Chebyshev's Inequality
\[\Pr \left[|X - \mu| \geq t \sigma \right] \leq \frac{1}{t^2} \] (Note: \(X \) need not be non-negative)

Proof: Using Markov,
\[\Pr \left[(X - \mu)^2 \geq t^2 \sigma^2 \right] \leq \frac{\mathbb{E}[(X - \mu)^2]}{t^2 \sigma^2} = \frac{\sigma^2}{t^2 \sigma^2} = \frac{1}{t^2} \]
Chernoff Bounds

For independent X_1, \ldots, X_n where $X_i = 1$ w.p. p_i and 0 otherwise,

$$\Pr\left[X = \sum_{i=1}^{n} X_i > (1+\varepsilon)\mu \right] < \left(\frac{e^\varepsilon}{(1+\varepsilon)^{1+\varepsilon}} \right)^\mu$$

$$\Pr\left[X < (1-\varepsilon)\mu \right] < \left(\frac{e^{-\varepsilon}}{(1-\varepsilon)^{1-\varepsilon}} \right)^\mu$$

Proof: Let us prove only positive deviation.

$$\Pr\left[X > (1+\varepsilon)\mu \right] = \Pr\left[e^{tx} > \exp(t(1+\varepsilon)\mu) \right] \leq \frac{\mathbb{E}[e^{tx}]}{\exp(t(1+\varepsilon)\mu)}$$

Monotonically increasing function of t for $t > 0$

$$\prod_{i=1}^{n} \frac{e^{tx_i}}{\exp(t(1+\varepsilon)\mu)} = \frac{\prod_{i=1}^{n} e^{tx_i} \cdot p_i + (1-p_i)}{\exp(t(1+\varepsilon)\mu)} \leq \exp(\ln(p_i) (e^t - 1))$$

Simpler (more useful bounds):

$$\varepsilon \in (0, 1]: \begin{cases}
\Pr\left[X > (1+\varepsilon)\mu \right] \leq \exp\left(-\frac{\varepsilon^2 \mu}{3}\right) \\
\Pr\left[X < (1-\varepsilon)\mu \right] \leq \exp\left(-\frac{\varepsilon^2 \mu}{2}\right)
\end{cases}$$

Generic Counting via Sampling
Suppose you have a universe \(U \) and subset \(S \subseteq U \).

Your goal is to estimate \(|S|\), given a uniform sampling procedure for \(U \).

Algorithm: \(X_i = \begin{cases} 1 & \text{if sample in } S \\ 0 & \text{o.w.} \end{cases} \)

Output: \(\left(\frac{\sum_{i=1}^{N} X_i}{N} \right) |U| = \tilde{N}_S \leftarrow \text{unbiased estimator} \quad E[\tilde{N}_S] = |S| \)

Q: How many samples \(N \) do you need?

Suppose \(|S|/|U| = \theta \)

\[\Pr \left[|\tilde{N}_S - |S|| > \varepsilon |S| \right] = \Pr \left[|\sum_{i=1}^{N} X_i - \theta N| > \varepsilon \theta N \right] \leq e^{-\frac{2\varepsilon^2 N \theta^2}{3}} \]

by Chernoff

For \(O(1) \) error probability, \(N \geq \frac{3}{\varepsilon^2 \theta} = \frac{3|U|}{\varepsilon^2 |S|} \)

For \(O(1/n^d) \) error probability, repeat the \(n \) times (BOOSTING)

large of \((s) \) small compared to \(|U| \)