Second Homework Assignment

Write the solution to each problem on a single page. The deadline for handing in solutions is October 02.

Problem 1. (20 = 12 + 8 points). Consider an array \(A[1..n] \) for which we know that \(A[1] \geq A[2] \) and \(A[n-1] \leq A[n] \). We say that \(i \) is a local minimum if \(A[i-1] \geq A[i] \leq A[i+1] \). Note that \(A \) has at least one local minimum.

(a) We can obviously find a local minimum in time \(O(n) \). Describe a more efficient algorithm that does the same.

(b) Analyze your algorithm.

Problem 2. (20 points). A vertex cover for a tree is a subset \(V \) of its vertices such that each edge has at least one endpoint in \(V \). It is minimum if there is no other vertex cover with a smaller number of vertices. Given a tree with \(n \) vertices, describe an \(O(n) \)-time algorithm for finding a minimum vertex cover. (Hint: use dynamic programming or the greedy method.)

Problem 3. (20 points). Consider a red-black tree formed by the sequential insertion of \(n > 1 \) items. Argue that the resulting tree has at least one red edge.

[Notice that we are talking about a red-black tree formed by insertions. Without this assumption, the tree could of course consist of black edges only.]

Problem 4. (20 points). Prove that \(2n \) rotations suffice to transform any binary search tree into any other binary search tree storing the same \(n \) items.

Problem 5. (20 = 5 + 5 + 5 + 5 points). Consider a collection of items, each consisting of a key and a cost. The keys come from a totally ordered universe and the costs are real numbers. Show how to maintain a collection of items under the following operations:

(a) ADD\((k, c)\): assuming no item in the collection has key \(k \) yet, add an item with key \(k \) and cost \(c \) to the collection;

(b) REMOVE\((k)\): remove the item with key \(k \) from the collection;

(c) MAX\((k_1, k_2)\): assuming \(k_1 \leq k_2 \), report the maximum cost among all items with keys \(k \in [k_1, k_2] \).

(d) COUNT\((c_1, c_2)\): assuming \(c_1 \leq c_2 \), report the number of items with cost \(c \in [c_1, c_2] \).

Each operation should take at most \(O(\log n) \) time in the worst case, where \(n \) is the number of items in the collection when the operation is performed.