- Algorithm is always correct but running time bounds hold in expectation.
 - e.g. Randomized Quicksort
 - review quicksort
 - worst case: \(T(n) = 2T(n-1) + O(1) = O(n^2) \)

In randomized quicksort, pick pivot uniformly at random in each subproblem.

Analysis 1 (Backward Analysis)

In step \(k \), # of pivots increases from \(k-1 \) to \(k \) by selecting a random pivot from the elements not selected yet. Looking backwards, in step \(k \) (steps are still indexed from the beginning), the # of pivots decreases from \(k \) to \(k-1 \).

Claim: Given a set of \(k \) pivots at the end of step \(k \), the pivot that was selected in the \(k \)th step is uniform distributed among these \(k \) pivots.

Proof: for any two elements, their relative order of being selected as pivot is uniform.

Lemmas: The expected cost in step \(k \) is \(\leq \frac{2(n-k)}{k} \).

Proof: The sum of costs over all the \(k \) pivots being the last one is \(\leq 2n \).

Cor: The expected cost of randomized quicksort is \(O(n \log n) \).
Consider the comparison that an element x_i is part of. If such a comparison splits the subproblem in $(\frac{3}{4}, \frac{1}{4})$ or a more balanced ratio, call it a "good" comparison; prob of good comparison:

Fact: x_i is in $\leq \log_{1/3} n$ good comparisons.

Lemma: $\Pr(\text{# of comparisons for } x_i \text{ till you get } k \text{ good comparisons} > (1+\epsilon) x)$ $\leq e^{-\epsilon^2 x}.$

Proof: Since comparisons being good or bad are independent, we use Chernoff bounds.

Choose $\epsilon = \sqrt{\ln (1/3)}$ and $k = \log_{1/3} n.$

$\Pr(\text{# of comparisons for } x_i > (1+\sqrt{\ln (1/3)}) \log_{1/3} n)$ $\leq \frac{1}{n^3}.$

$\Pr(\exists x_i \text{ s.t. } \# \text{ of comparisons for } x_i = O(\log n) \leq \frac{1}{n^3}.$

So running time $= O(n \log n)$ $\geq 1 - \frac{1}{n^3}.$