A (decision) problem is in NP if it has a polynomially checkable proof (also called a certificate).

E.g. HAM (Hamiltonian circuit): Does a graph have a cycle visiting every vertex exactly once? Certificate: The Hamiltonian cycle

Certificate: The coloring

Fact: P \subseteq NP

Proof: Run poly-time algo to verify solution.

A problem A is said to be polynomially reducible to B (denoted A \leq B) if given an instance of problem A, we can produce an instance of problem B s.t. there is a polynomial time algorithm that can decide the instance given a decision on the instance of B.

\[\text{Instance of } A \xrightarrow{\text{Poly}} \text{Instance of } B \xrightarrow{\text{Oracle}} \text{YES/NO for } B \xrightarrow{\text{Poly}} \text{YES/NO for } A \]

E.g., Bipartite Matching \leq Max Flow

\[\text{Maxflow} \geq k \]

\[\text{Matching} \geq k \]

We will use reductions to establish hardness. If A reduces to B (A \leq B), then B is at least as hard as A (upto a polynomial).

A problem is said to be NP-hard if all problems in NP reduce to the problem and NP-complete if it additionally belongs to NP.

Theorem (Cook-Levin): SAT \leq NP-complete.

\[\text{SAT} : (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor x_3) \land (x_4 \lor \neg x) \]
Is this formula (in CNF) satisfiable?

Reductions

If \(A \leq B \) and \(A \) is \(NP \)-hard, then so too is \(B \).

Examples:

1. \(SAT \leq \) \(3\)-\(SAT \)

\[(x_1 \lor x_2 \lor x_3 \lor \ldots \lor x_k) \text{ is satisfied by an assignment if and only if there exists a setting of variables } x_1, x_2, \ldots \text{ such that}\]

\[(x_1 \lor x_2 \lor x_1) \land (x_1 \lor x_2 \lor x_2) \land (x_1 \lor x_2 \lor x_3) \land \ldots \land (x_{k-1} \lor x_k, x_k)\]

is satisfied.

2. \(SAT \rightarrow \) Integer programming

\[(x_1 \lor x_2 \lor x_3) \rightarrow x_1 + x_2 + (1-x_3) \geq 1\]

3. \(SAT \rightarrow \) Independent set

\[(x_1 \lor x_2 \lor x_3) \land (\neg x_1, \lor x_2)\]

\(\text{Independent set } \geq m \text{ (#of clauses)}\)

\(\uparrow\)

\(\text{SAT formula is satisfiable}\)

\[\text{Independent set } \geq m \text{ (#of clauses)}\]

\(\text{Independent set } \geq m \text{ (#of clauses)}\)

\(\uparrow\)

\(\text{SAT formula is satisfiable}\)

4. Independent set \(\rightarrow\) Clique

\(G\) has independent set of size \(k \) if and only if \(\overline{G} \) has clique of size \(k \).

5. Independent set \(\rightarrow\) Vertex cover

\(G\) has independent set of size \(k \) if and only if \(G\) has vertex cover of size \(N \)-\(k \).

\((C \text{ is an independent set } \iff V - C \text{ is a vertex cover)}\)

6. Vertex cover \(\rightarrow\) Dominating set

Place a vertex on every edge; size of dominating set in new graph equals the size of a vertex cover in original graph.

Approximation Algorithms

An \(\alpha \)-approximation algorithm for a minimization (resp. maximization)
An α-approximation algorithm for a minimization (resp. maximization) problem is guaranteed to produce a solution ALGO of value $\leq \alpha \cdot \text{OPT}$ (resp. $\geq \frac{\text{OPT}}{\alpha}$).

Examples:

1. **Vertex cover**: pick both ends of an edge, remove all incident edges, and repeat. 2-approx (best known?)

2. **Set cover** (generalizes vertex cover, hence NP-hard).

 - **Sets** $S \subset U$. Find min. collection of sets that covers all U.
 - **Greedy Alg**: generically think VC alg. pick set with max new
 elements covered.
 - **Analysis**: suppose k elements left to be covered. Then cost
 per element is at most OPT/k.

 $$\Rightarrow H_k - \text{approx} = O(\log n) - \text{approx}.$$

3. **Max coverage**: given a budget of k sets, how many elements
 can we cover?

 - **Greedy Alg**: pick set that maximizes # of new elements covered.
 - **Analysis**: if $\text{OPT} - \text{ALGO} = t_i$ currently, then Set that covers $\frac{t}{k}$
 elements, i.e., $t_{i+1} \leq t_i (1 - \frac{1}{k})$

 Thus, $t_k \leq t_{k-1} (1 - \frac{1}{k}) \leq \ldots \leq t_0 (1 - \frac{1}{k})^k = \text{OPT} (1 - \frac{1}{k})^k$

 As $k \to \infty$, $t_k \leq \frac{1}{e} \cdot \text{OPT}$

 $$\Rightarrow \left(1 - \frac{1}{e}\right) - \text{approx}.$$

4. **Metric TSP**: Walk on spanning tree so that each edge is traversed
 at most twice - 2-approx