Due Date: November 10, 2008

Problem 1: [10pts] Let D be a set of n circular disks in \mathbb{R}^2. Show that the boundary of their union has $O(n)$ vertices. Describe a randomized algorithm to compute the union of D whose expected running time is $O(n \log n)$.

Problem 2: [15pts] Let S be a set of n segments in \mathbb{R}^2, let W be a vertical strip that contains all segments of S, and let $\chi(S)$ be the number of intersection points in S. Show that:

(i) If the endpoints of S lie on the boundary of W, then $\chi(S)$ can be computed in $O(n \log n)$ time.

(ii) If m of the segments in S have their endpoints lying in the interior of W, then $\chi(S)$ can be computed in $O((m^2 + n) \log n)$ time. (Hint: Use duality.)

(iii) Use (i) and (ii) to show that $\chi(S)$ can be computed in $O(n^{3/2} \log^2 n)$ time.

Problem 3: [10pts] Let S be a set of n points in \mathbb{R}^2. Show that the number of triples in S that form isosceles triangles is $O(n^{7/3})$.

Problem 4: [10pts] Describe an $O(n^3)$ time algorithm to compute a minimum-weight triangulation of a convex n-gon. (Hint: Use dynamic programming.)