From Complete to Incomplete Information and Back

L. Antova et al.
Presented by: Nedyalko Borisov

Instructor: Jun Yang
Duke University
Computer Science
Jan 29, 2008

Motivation

- Incomplete information
 - Database with missing information
 - web info extraction
 - manage information systems
 - no solution for now
 - Answers set programing
 - used in AI (knowledge representation)
 - not scalable

Example

Buy company, preserve skill web, one employee could leave

\[
U \leftarrow \text{select choice of Company.Emp} \mid \text{CID};
\]
\[
V \leftarrow \text{select R1.CID, R1.EID} \mid \text{from Company.Emp R1, (select * from U choice of EID) R2}
\quad \text{where} \quad R1.CID = R2.CID \text{ and } R1.EID = R2.EID;
\]
\[
W \leftarrow \text{select certain CID, Skill} \mid \text{from V, Emp.Skill EID = Emp.Skill,EID (select CID from V)};
\]
\[
\text{select possible CID} \mid \text{from W where Skill = 'Web'};
\]

I-SQL vs SQL

Buy company, preserve skill web, one employee could leave

\[
U \leftarrow \text{select * from Company.Emp} \mid \text{choice of CID};
\]
\[
V \leftarrow \text{select R1.CID, R1.EID} \mid \text{from Company.Emp R1, (select * from U choice of EID) R2}
\quad \text{where} \quad R1.CID = R2.CID \text{ and } R1.EID = R2.EID;
\]
\[
W \leftarrow \text{select certain CID, Skill} \mid \text{from V, Emp.Skill EID = Emp.Skill,EID (select CID from V)};
\]
\[
\text{select possible CID} \mid \text{from W where Skill = 'Web'};
\]

World-set SQL

- I-SQL
 - analog of SQL
 - language of search engine
 - based on world-set algebra
 - generic - preserve independece of the data
 - expressive - common queries + incomplete info
 - conservative - analog to relational algebra
 - efficient evaluation

World-set Algebra (WSA)

- World-set algebra
 - world-set algebra to ISQL <=> relational algebra to SQL
 - set semantics
 - no bag semantics and aggregations
 - conservative over relational algebra => each 1W/1W query <=> SQL
World Manipulation 1

- Data manipulation
 - I-SQL uses the standard SQL commands - insert, update and delete

- Merging worlds
 - possible and certain - compute tuples that appear in some worlds and adds them to each of the input worlds
 - group-worlds by - group worlds by certain criteria

World Manipulation 2

- Splitting worlds
 - choice-of - freeze the values for a given set of attributes and analyze each combination in separate world
 - repair-by-key - constructs possible repairs of a relation that violates a uniqueness constraint

Syntax and Semantics 1

\[
\begin{align*}
\prod^{i}_{j=1} \phi \cdot \sigma\alpha (\mathbf{R}) & = \{ \mathbf{R} \mid \exists \mathbf{A} (\mathbf{R} \subseteq \mathbf{A}) \land \exists \mathbf{B} (\mathbf{A} \subseteq \mathbf{B}) \\
\prod^{i}_{j=1} \phi \cdot \sigma\alpha (\mathbf{R}) & = \{ \mathbf{R} \mid \exists \mathbf{A} (\mathbf{R} \subseteq \mathbf{A}) \land \exists \mathbf{B} (\mathbf{A} \subseteq \mathbf{B}) \land \exists \mathbf{C} (\mathbf{B} \subseteq \mathbf{C}) \\
\prod^{i}_{j=1} \phi \cdot \sigma\alpha (\mathbf{R}) & = \{ \mathbf{R} \mid \exists \mathbf{A} (\mathbf{R} \subseteq \mathbf{A}) \land \exists \mathbf{B} (\mathbf{A} \subseteq \mathbf{B}) \land \exists \mathbf{C} (\mathbf{B} \subseteq \mathbf{C}) \land \exists \mathbf{D} (\mathbf{C} \subseteq \mathbf{D}) \}
\end{align*}
\]

Syntax and Semantics 2

- Operator typing
 - relational algebra operators and groups operators are: 1 \rightarrow 1 or m \rightarrow m
 - possible and certain operators are: m \rightarrow 1
 - choice-of operator is: 1 \rightarrow m or m \rightarrow m

- Extending Word-set algebra
 - repair-by-key operator
 - NP hard problem
 - query evaluation in Ptime in respect to data complexity

WSA to Relational Algebra

- Condition: complete representation of the input world set
- Inlined representation of World-sets
- World-set translation (next slide)
WSA Translation

\[
\begin{align*}
\tau_f(R_1, \ldots, R_n, W) &= \varpi_f(R_1, \ldots, R_n, W) \\
\varpi_f(R_1, \ldots, R_n, W) &= \pi_f(T) \\
\pi_f(T) &= \pi_f(T) \\
\end{align*}
\]

Progress

- Currently under development system called MayBMS (Cornell database group)
- Built on top of PostgreSQL
- Only small amount of experiments completed

Experiments

- Selection/projections queries in practice have a constant overhead of a factor of 3 to 5 over PostgreSQL running the same queries on single world
- Joins shows exponential behaviour
- Universal operations (difference, certain aggregations) need further work

Related work

- Trio (Stanford University)
 - stores information in weak representation systems
 - use constraints (called lineage) to represent dependencies
 - always applies constraints for answering queries
 - no experiments have been reported

Problems and Discussions 1

- Implementation of I-SQL in real systems
 - Performance
 - not shown how they perform the experiments
 - what metrics are used
 - Translation to SQL?
- From incomplete to complete
 - Not presented

Problems and Discussions 2

- Bag semantics and aggregations
- Do we need the world set semantics?
- Is it worth the efforts? (see the example)
- Probabilistics – claimed to be easy. They have demo on ICDE’07
Thank you!