OLAP over Imprecise Data with Domain Constraints

Doug Burdick
University of Wisconsin – Madison

Joint work with AnHai Doan (UW-Madison), Raghu Ramakrishnan (Yahoo! Research), Shivakumar Vaithyanathan (IBM Research at Almaden)
Traditional OLAP: Data Model

![Diagram of OLAP data model]

FactID	**Auto**	**Loc**	**Repair**
 p1 | F150 | Mad | 100
 p2 | Sierra | Mad | 500
 p3 | F150 | Mil | 100
 p4 | Sierra | Mil | 200
Traditional OLAP: Queries

Auto = Truck
Loc = Mil
SUM(Repair) = ?
Answer: 300

<table>
<thead>
<tr>
<th>FactID</th>
<th>Auto</th>
<th>Loc</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>F150</td>
<td>Mad</td>
<td>100</td>
</tr>
<tr>
<td>p2</td>
<td>Sierra</td>
<td>Mad</td>
<td>500</td>
</tr>
<tr>
<td>p3</td>
<td>F150</td>
<td>Mil</td>
<td>100</td>
</tr>
<tr>
<td>p4</td>
<td>Sierra</td>
<td>Mil</td>
<td>200</td>
</tr>
</tbody>
</table>
Querying Information Extracted from Text

<table>
<thead>
<tr>
<th>ID</th>
<th>Review Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>I love the reliability of my F150 from Zimbrick Ford in Milwaukee. Much better than my Sierra. Paid $30000 for a 4WD.</td>
</tr>
<tr>
<td>p2</td>
<td>My 5-speed Subaru Outback handles well in Wisconsin winters. Great value at $25000</td>
</tr>
<tr>
<td>p3</td>
<td>After my old car was totaled in the Madison flood, I bought a BMW 330. It’s at the mechanic’s all the time.</td>
</tr>
</tbody>
</table>

For each location, what is the average price for different cars?

<table>
<thead>
<tr>
<th>ID</th>
<th>Location</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>Milwaukee</td>
<td>{F150, Sierra}</td>
<td>30000</td>
</tr>
<tr>
<td>p2</td>
<td>Wisconsin</td>
<td>Subaru Outback</td>
<td>25000</td>
</tr>
<tr>
<td>p3</td>
<td>Madison</td>
<td>BMW 330</td>
<td>330</td>
</tr>
</tbody>
</table>

In a dataset from a real-world application at IBM Almaden with 800,000 facts, 30% were imprecise
[VLDB 05] Proposed Solution: Allow Imprecise Facts

Table:

<table>
<thead>
<tr>
<th>FactID</th>
<th>Auto</th>
<th>Loc</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>F150</td>
<td>Mad</td>
<td>100</td>
</tr>
<tr>
<td>p2</td>
<td>Sierra</td>
<td>Mad</td>
<td>500</td>
</tr>
<tr>
<td>p3</td>
<td>F150</td>
<td>Mil</td>
<td>100</td>
</tr>
<tr>
<td>p4</td>
<td>Sierra</td>
<td>Mil</td>
<td>200</td>
</tr>
<tr>
<td>p5</td>
<td>Truck</td>
<td>Mil</td>
<td>100</td>
</tr>
</tbody>
</table>
[VLDB 05] Problem: How to Query Imprecise Facts

Auto = F150
Loc = Mil
SUM(Repair) = ?

Answer: ?

<table>
<thead>
<tr>
<th>FactID</th>
<th>Auto</th>
<th>Loc</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>F150</td>
<td>Mad</td>
<td>100</td>
</tr>
<tr>
<td>p2</td>
<td>Sierra</td>
<td>Mad</td>
<td>500</td>
</tr>
<tr>
<td>p3</td>
<td>F150</td>
<td>Mil</td>
<td>100</td>
</tr>
<tr>
<td>p4</td>
<td>Sierra</td>
<td>Mil</td>
<td>200</td>
</tr>
<tr>
<td>p5</td>
<td>Truck</td>
<td>Mil</td>
<td>100</td>
</tr>
</tbody>
</table>
[VLDB 05] Solution: Use possible worlds

Imprecise fact table D

EDB D'

Possible worlds

w_1

w_2

w_3

w_4

Allocation

Query answer is **expected value** over possible worlds
[VLDB 05] Example

Imprecise Fact Table D

<table>
<thead>
<tr>
<th>FactID</th>
<th>Auto</th>
<th>Loc</th>
<th>Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>F150</td>
<td>Mad</td>
<td>100</td>
</tr>
<tr>
<td>p2</td>
<td>Sierra</td>
<td>Mad</td>
<td>500</td>
</tr>
<tr>
<td>p3</td>
<td>F150</td>
<td>Mil</td>
<td>100</td>
</tr>
<tr>
<td>p4</td>
<td>Sierra</td>
<td>Mil</td>
<td>200</td>
</tr>
<tr>
<td>p5</td>
<td>Truck</td>
<td>Mil</td>
<td>100</td>
</tr>
</tbody>
</table>

Extended Database D’

<table>
<thead>
<tr>
<th>ID</th>
<th>FactID</th>
<th>Auto</th>
<th>Loc</th>
<th>Repair</th>
<th>Alloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p1</td>
<td>F150</td>
<td>Mad</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>p2</td>
<td>Sierra</td>
<td>Mad</td>
<td>500</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>p3</td>
<td>F150</td>
<td>Mil</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>p4</td>
<td>Sierra</td>
<td>Mil</td>
<td>200</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>p5</td>
<td>F150</td>
<td>Mil</td>
<td>100</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>p5</td>
<td>Sierra</td>
<td>Mil</td>
<td>100</td>
<td>0.4</td>
</tr>
</tbody>
</table>
[VLDB 05] Example

\[
P(w_1) = 0.6 \\
P(w_2) = 0.4
\]
Contributions [VLDB 05, VLDB 06]

- Formalize entire process
- Develop several allocation policies
- Show how to execute allocation efficiently
- Demonstrate how to answer queries efficiently

Assumes all imprecise facts are independent
Challenge: Incorporate Domain Constraints

<table>
<thead>
<tr>
<th>ID</th>
<th>Repair Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>F150, oil change, $100, WI, John Smith</td>
</tr>
<tr>
<td>r2</td>
<td>customer John Smith brought F150 to garage engine noise, WI, $250</td>
</tr>
<tr>
<td>r3</td>
<td>Madison, Honda, broken ex. pipe, Dells & I-90, towed 25 miles, $130</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FactID</th>
<th>Loc</th>
<th>Auto</th>
<th>Name</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>Wisconsin</td>
<td>F150</td>
<td>John Smith</td>
<td>100</td>
</tr>
<tr>
<td>p2</td>
<td>Wisconsin</td>
<td>F150</td>
<td>John Smith</td>
<td>250</td>
</tr>
<tr>
<td>p3</td>
<td>Madison</td>
<td>Honda</td>
<td>Dells</td>
<td>130</td>
</tr>
<tr>
<td>p4</td>
<td>Dells</td>
<td>Honda</td>
<td>Madison</td>
<td>130</td>
</tr>
</tbody>
</table>

"Two facts with same person name and model must have same city"

"Exactly one of facts p3 or p4 exists"
Summary of Contributions

- Present constraint language L
 - Define both syntax of L and semantics of answering queries with constraints defined in L

- Efficiently answer queries with constraints using a marginal database D^*

- Present algorithms to efficiently construct marginal database D^*
Constraint Language: Examples

- “Two facts with same person name and model must have same location”
 - $(r.\text{Name} = r'.\text{Name}) \land (r.\text{Auto} = r'.\text{Auto}) \rightarrow (r.\text{Loc} = r'.\text{Loc})$

- “Exactly one of facts p3 or p4 exists”
 - $\exists p3 \rightarrow \neg \exists p4$
 - $\exists p4 \rightarrow \neg \exists p3$

- “If the location for p1 is Madison, then p3 must exist (and p4 cannot exist)”
 - $(p1.\text{Loc} = \text{“Madison”}) \rightarrow \exists p3 \land \neg \exists p4$
Constraint Language: Syntax

- A constraint has form $A \Rightarrow B$ where A, B are conjunctions of atoms.
- Atoms have form $[r.A \Theta c]$ or $[r.A \Theta r'.A]$ or $\exists(r), \neg\exists(r)$ where
 - r, r' are either
 - specific fact IDs themselves
 - variables that bind to fact IDs in D
 - $r.A$ is the value of attribute A of fact r.
 - $\Theta \in \{=, \neq, \leq, <, \geq, >\}$ is a comparison operator over the appropriate domain.
 - c is a constant from $\text{dom}(A)$, and
 - $\exists(r)$ ($\neg\exists(r)$) is a predicate that holds if fact r exists (cannot exist).
A possible world satisfying all constraints is **valid**

Query answer is expected value over **valid** possible worlds
Efficient Query Answering

- Can compute expected value over valid possible worlds in *single scan* of Marginal Database (MDB) D*

Diagram:
- Imprecise fact table D
 - Allocation
 - EDB D'
 - Possible worlds: W₁, W₂, W₃, W₄
 - Constraints C
 - W₂
 - Q
 - A

- Imprecise fact table D
 - Allocation
 - EDB D'
 - Allocation
 - Marginalization
 - MDB D*
 - Q
 - A
Constraint: \((r.\text{Model} = r'.\text{Model}) \rightarrow (r.\text{Loc} = r'.\text{Loc})\)

EDB D’

<table>
<thead>
<tr>
<th>FactID</th>
<th>Model</th>
<th>Loc</th>
<th>Cost</th>
<th>Alloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>Cam</td>
<td>Mad</td>
<td>100</td>
<td>0.7</td>
</tr>
<tr>
<td>r1</td>
<td>Cam</td>
<td>Dells</td>
<td>100</td>
<td>0.3</td>
</tr>
<tr>
<td>r2</td>
<td>Cam</td>
<td>Mad</td>
<td>400</td>
<td>0.8</td>
</tr>
<tr>
<td>r2</td>
<td>Cam</td>
<td>Dells</td>
<td>400</td>
<td>0.2</td>
</tr>
</tbody>
</table>

MDB D’

<table>
<thead>
<tr>
<th>FactID</th>
<th>Model</th>
<th>Loc</th>
<th>Cost</th>
<th>Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>r1</td>
<td>Cam</td>
<td>Mad</td>
<td>100</td>
<td>0.9</td>
</tr>
<tr>
<td>r1</td>
<td>Cam</td>
<td>Dells</td>
<td>100</td>
<td>0.1</td>
</tr>
<tr>
<td>r2</td>
<td>Cam</td>
<td>Mad</td>
<td>400</td>
<td>0.9</td>
</tr>
<tr>
<td>r2</td>
<td>Cam</td>
<td>Dells</td>
<td>400</td>
<td>0.1</td>
</tr>
</tbody>
</table>

\[P(w1) = 0.56 \]
\[P(w2) = 0.24 \]
\[P(w3) = 0.56 \]
\[P(w4) = 0.06 \]

\[PN(w1) = 0.90 \]
\[PN(w2) = 0 \]
\[PN(w3) = 0 \]
\[PN(w4) = 0.10 \]
Marginal Database (MDB) D*

- Let D' be EDB obtained from imprecise fact table D
- Each claim in D' has tuple f_t with allocation weight w_t
- Let W be set of valid possible worlds satisfying a given set of constraints C
- Let m_t be the total probability of worlds in W where f_t is true.

- We refer to m_t as the \textit{marginal} probability of f_t and (f_t, m_t) is a marginal tuple.

- Store all marginal tuples in \textit{marginal database} (MDB) D^*
Marginalization Algorithms

- Can process connected component in constraint hypergraph **independently**
Constraint Hypergraph: Example

Constraint:

\[(r.\text{Model} = r'.\text{Model}) \rightarrow (r.\text{Loc} = r'.\text{Loc})\]
Constraint Hypergraph: $G=(V,H)$

- **Nodes V:** For each fact r in given imprecise database D, introduce a node to V

- **Hyperedges H:** For each minimal set of facts with a combination of completions violating a constraint, introduce a hyperedge to H
Experimental Setup

- Algorithms evaluated on several datasets
 - Real-world dataset: 798K facts, 4 dimensions
 - Used several synthetic datasets
 - Scalability (up to 3.2 million tuples)

- Constraint sets
 - Randomly generated several constraint sets of varying “complexity”
 - Develop suitable complexity metric
Performance

800K Facts

- Total Time
- GenerateComponents
- ProcessComponents

Best Fit (Total Time)
- Best Fit (GenComps)
- Best Fit (ProcComps)

Time (sec)

Total Bindings

0.0E+00 1.0E+07 2.0E+07
Performance

3200K Facts

- Total Time
- GenerateComponents
- ProcessComponents
- Best Fit (Total Time)
- Best Fit (GenComps)
- Best Fit (ProcComps)
Component Sizes

- 2--5
- 6--10
- 11--20

800K (Automotive)
Related work

- Imprecise data with constraints
 - MayBMS [Antova et al. 07]
 - Representing and Querying Correlated Tuples in Probabilistic Databases [Sen, Deshpande 07]
 - ConQuer [Fuxman et al 05]

- Probabilistic databases
 - Probabilistic Databases [Dalvi et al. 04]
 - TRIO system for uncertain data [Widom et al.05]

- OLAP
 - Constraints in OLAP [Hurtado et. al 02]
 - OLAP over Incomplete Data [Dyreson 96]
Summary

- We extend our framework for OLAP over imprecise data to support domain information.

- Eliminate the strong independence assumptions required earlier
 - Often violated in many applications (e.g., IE from text)

- First work we are aware of to consider OLAP aggregation queries over imprecise data in the presence of constraints
Discussion

- Pretty brute-force
- Fact Table => EDB, how?
- Other Queries: AVG, MIN, MAX
 - How to generate MDB?
- Expressiveness of Constraints
 - A => B (0.4) or C (0.6)
 - More complex distributional constraints on data