Cantor’s Theory of Infinite Sets

COMPSCI 230 — Discrete Math

February 7, 2017
Outline

1. Infinite Sets
2. The Cardinality of the Integers: Bijections
3. The Cardinality of the Rationals: Dovetailing
4. The Cardinality of the Reals: Diagonalization
Comparing Infinities

• For finite sets, \(A \subset B \Rightarrow |A| < |B| \)
• \(\{a, c\} \subset \{a, b, c\} \) and \(2 < 3 \)
• For infinite sets, \(\subset \) is defined, while \(|\cdot| \) is not
• \(\{x \mid x \text{ is prime}\} \subset \mathbb{N} \)
 But what are \(|\{x \mid x \text{ is prime}\}| \) and \(|\mathbb{N}|? \)
• So from \(A \subset B \) we cannot conclude anything about \(|A| \) or \(|B| \) for infinite sets
• We need a new way to measure \(|A| \)
• No necessary contradiction between \(A \subset B \) and \(|A| = |B| \) for infinite sets
Cantor’s Equality for Cardinality

- \(|A| = |B| \iff \text{there exists a bijection between } A \text{ and } B\)
- Bijection: injection both ways
- Associate exactly one \(b \in B\) to each \(a \in A\), and associate exactly one \(a \in A\) to each \(b \in B\)
- Works for finite sets!
- Cantor’s program:
 - Instead of associating number \(|A|\) to set \(A\) ... group all sets such that sets in the same group have equal cardinality
 - We do not have the number \(|A|\), but we can order sets by their cardinality
 - Given any two sets \(A, B\) (finite or infinite), we can say exactly one of \(|A| = |B|\) or \(|A| < |B|\) or \(|B| < |A|\)
 - Defining cardinality by abstraction
 - Analogous to defining parity by congruence
Proving or Disproving Equality

• Proving equality:
 • Constructive method: Make a conceptual “table” of \((a, b)\) pairs with no gaps or repetitions
 • Constructive method: Devise an algorithm to compute \(b\) from \(a\) and vice versa and show that each is an injection
 • Non-constructive method: Argue that such a bijection must exist

• Proving inequality is harder:
 • To prove that \(|A| \neq |B|\) we need to show that no bijection can possibly exist
 • \textit{Any} function we may find between \(A\) and \(B\) will have gaps or repetitions
 • Once we prove inequality, we usually also know whether \(|A| < |B|\) (different cardinalities and \(A \subset B\)) or \(|B| < |A|\)
Define classes (sets of sets) of cardinalities:
\{A_1, A_2, \ldots \} such that |A_1| = |A_2| = \ldots

Start with \(A_1 = \mathbb{N} \) and let \(|\mathbb{N}| = \aleph_0 \) (“aleph nought”)

Any set \(A \) with \(|A| = \aleph_0 \) is countably infinite

What other sets have the same cardinality?

Even naturals: \(n \leftrightarrow 2n \)

\[
\begin{array}{c|c}
 a & b \\
 \hline
 0 & 0 \\
 1 & 2 \\
 2 & 4 \\
 \vdots & \vdots \\
\end{array}
\]

A bijection: \(|E| = |\mathbb{N}| = \aleph_0\)
(E is the set of even numbers)
Proving Bijection

- Bijection: injection both ways
- \(b = f(a) = 2a \) for \(a \in \mathbb{N} \) and \(b \in \mathbb{E} \) is an injection:
- \(a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2) \)
- Proof:
 - Let \(a_1, a_2 \in \mathbb{N} \) with \(a_1 \neq a_2 \)
 - Then, \(a_1 - a_2 \neq 0 \)
 - Let \(b_1 = f(a_1) = 2a_1 \) and \(b_2 = f(a_2) = 2a_2 \)
 - Then, \(b_1, b_2 \in \mathbb{E} \)
 - Also, \(b_1 - b_2 = 2a_1 - 2a_2 = 2(a_1 - a_2) \neq 0 \)
 - Therefore, \(b_1 \neq b_2 \)
 - Therefore, \(b = 2a \) is an injection

- Similar reasoning for \(a = f^{-1}(b) = b/2 \) for even \(b \) shows that \(f^{-1} \) is an injection
A Slightly Harder Example

\[|\{ x \mid x \text{ is prime}\}| = ? \]

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

• What do we need to show?
 • 0. No repetitions on either side (up to us!)
 • 1. No primes are skipped
 • 2. The table never stops
• Constructive argument for 1: Use the sieve
• Non-constructive argument for 2: Euclid’s 2nd theorem: The number of primes is infinite
The Number of Primes is Infinite

• Proof by contradiction:
 Assume the opposite, and derive a contradiction
• Assume that the number of primes is finite
• So there must be a largest prime, call it p_n
• Let p_0, \ldots, p_n be all primes
• Let $q = 1 + p_0 \cdot \ldots \cdot p_n$
• Example: $q = 1 + 2 \cdot 3 \cdot 5 \cdot 7 = 211$
• None of p_0, \ldots, p_n divides q (remainder of 1)
• Either q is divisible by a bigger prime than p_n, or q is a prime itself
• Either way, there is a prime greater than p_n
• This contradicts our assumption
• The number of primes is infinite
There Are \aleph_0 Primes

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

- Table construction \Rightarrow No repetitions on either side
- Sieve of Erathostenes \Rightarrow No primes are skipped
- Euclid’s 2nd theorem \Rightarrow The table never stops
- Found a bijection between \mathbb{N} and the primes
- We can write a Python generator of primes
- There are as many primes as there are naturals

$|\{x \mid x \text{ is prime}\}| = \aleph_0$, even if $|\{x \mid x \text{ is prime}\}| \subset \mathbb{N}$
The Cardinality of the Rationals: Dovetailing

|\(|\mathbb{Q} | = ? \) |

- Can we make a table to match \(\mathbb{N} \) and \(\mathbb{Q} \)?
- Can we write a Python generator for the rationals?
- How many positive rationals are there? \(|\mathbb{N}^+| = |\mathbb{Q}^+|?\)
- **Dovetailing:**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1</td>
<td>1/2</td>
<td>1/3</td>
<td>1/4</td>
<td>1/5</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>2/2</td>
<td>2/3</td>
<td>2/4</td>
<td>2/5</td>
</tr>
<tr>
<td>3</td>
<td>2/3</td>
<td>3/2</td>
<td>3/3</td>
<td>3/4</td>
<td>3/5</td>
</tr>
<tr>
<td>4</td>
<td>3/1</td>
<td>3/2</td>
<td>3/3</td>
<td>3/4</td>
<td>3/5</td>
</tr>
<tr>
<td>5</td>
<td>4/1</td>
<td>4/2</td>
<td>4/3</td>
<td>4/4</td>
<td>4/5</td>
</tr>
</tbody>
</table>

Dovetailing:
Dovetailing

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1/1</td>
<td>2/1</td>
<td>1/2</td>
<td>3/1</td>
<td>4/1</td>
</tr>
</tbody>
</table>

• Skip repetitions (require gcd(num, denom) = 1)

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>1/1</td>
<td>2/1</td>
<td>1/2</td>
<td>3/1</td>
<td>4/1</td>
<td>3/2</td>
<td>2/3</td>
<td>1/4</td>
<td>1/5</td>
<td>5/1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Can include zero and negatives by starting with zero, then alternating signs in the list

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0</td>
<td>1/1</td>
<td>-1/1</td>
<td>2/1</td>
<td>-2/1</td>
<td>1/2</td>
<td>-1/2</td>
<td>1/3</td>
<td>-1/3</td>
<td>3/1</td>
<td>-3/1</td>
<td>4/1</td>
<td>-4/1</td>
<td>3/2</td>
<td></td>
</tr>
</tbody>
</table>

• $|\mathbb{Q}| = \aleph_0$
The Cardinality of the Reals: Diagonalization

$|\mathbb{R}| = ?$

- Let’s just take a small piece of \mathbb{R}:
 $U = \{x \mid x \in \mathbb{R}, 0 < x < 1\}$

- We will show that even the reals on the open unit interval U are more than the naturals: $|U| > \aleph_0$

- Again by contradiction: *Diagonalization*

- Structure of the proof:
 - Assume that we can make a bijective table of the reals in U, listed *in any order whatsoever*
 The last qualification means: we cannot make any assumption about ordering in our argument
 - Then, we give a way to construct a real number that is not in the table
 - This contradicts our assumption, so the reals are not countably infinite
\[|U| > \aleph_0 \]

- Every number in \(U \) can be written as \(0.d_1d_2d_3 \ldots \).
- Only ambiguity is of the form
 \[0.d_0 \ldots d_{k-1}d_k000 \ldots = 0.d_0 \ldots d_{k-1}(d_k - 1)999 \ldots \]
- Example: \(0.347000 \ldots = 0.346999 \ldots \) (exactly two representations)
- So a table looks like this:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(r_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0.d_0^{(0)}d_1^{(0)}d_2^{(0)}d_3^{(0)} \ldots)</td>
</tr>
<tr>
<td>1</td>
<td>(0.d_0^{(1)}d_1^{(1)}d_2^{(1)}d_3^{(1)} \ldots)</td>
</tr>
<tr>
<td>2</td>
<td>(0.d_0^{(2)}d_1^{(2)}d_2^{(2)}d_3^{(2)} \ldots)</td>
</tr>
<tr>
<td>3</td>
<td>(0.d_0^{(3)}d_1^{(3)}d_2^{(3)}d_3^{(3)} \ldots)</td>
</tr>
</tbody>
</table>
\[|U| > \aleph_0 \]

\[
\begin{array}{c|c}
 n & r_n \\
\hline
 0 & 0.d_0^{(0)} d_1^{(0)} d_2^{(0)} d_3^{(0)} \ldots \\
 1 & 0.d_0^{(1)} d_1^{(1)} d_2^{(1)} d_3^{(1)} \ldots \\
 2 & 0.d_0^{(2)} d_1^{(2)} d_2^{(2)} d_3^{(2)} \ldots \\
 3 & 0.d_0^{(3)} d_1^{(3)} d_2^{(3)} d_3^{(3)} \ldots \\
\end{array}
\]

- A number not on the table:

\[e = 0.e_0 e_1 e_2 e_3 \ldots \quad \text{where} \quad e_n = (d_n^{(n)} + 1) \mod 10 \]

- \(e \neq r_0 \) because they differ in the first digit
- ...
- \(|U| > \aleph_0 \) uncountable
What about $|\mathbb{R}|$?

- Claim: $|U| = |\mathbb{R}|$
- Any bijection between U and \mathbb{R} will do
- Example: $r = \tan[\pi(u - \frac{1}{2})]$
- $u \to 0 \Rightarrow \pi(u - \frac{1}{2}) \to -\frac{\pi}{2} \Rightarrow r \to -\infty$
- $u \to 1 \Rightarrow \pi(u - \frac{1}{2}) \to \frac{\pi}{2} \Rightarrow r \to \infty$
- Monotonic \Rightarrow invertible \Rightarrow bijection!

- $|U| = |\mathbb{R}|
- \aleph_0 = |\mathbb{N}| = |\mathbb{Q}| < |U| = |\mathbb{R}| = c$
 (pronounce “cee”)
- Surprising, given that \mathbb{N} is not dense in \mathbb{Q} and \mathbb{Q} is dense in \mathbb{R}
- $[A$ is dense in B if every $b \in B$ is either in A or arbitrarily close to some $a \in A]$