Closest-First Graph Traversal

COMPSCI 230 — Discrete Math

March 30, 2017
Overview

Closest-First Graph Traversal
(a.k.a. Best-First Search or Dijkstra’s Algorithm)

1. Google Maps
2. Efficiency
3. Graph Implementation
4. Closest-First Traversal
Graph Traversal Application Example

- Google Maps finds the shortest route from \(a \) ("source") to \(b \) ("destination")
- Let us find some route first
- The graph \(G \) is the roadmap of the USA
- Vertices are intersections between roads (mostly cities)
- Edges are roads that connect intersections directly
- Traverse \(G \) from \(a \) until you encounter \(b \)
- Depth-first or breadth-first?
- Main problem with depth-first: The graph is very large
- Traveling from neighbor to neighbor can lead to very deep trees
- Breadth-first seems a much better idea

[Tree \(T \) is partial (not spanning)]
A Small Example

STL = 'St. Louis'
CHI = 'Chicago'
IND = 'Indianapolis'
NAS = 'Nashville'
CLE = 'Cleveland'
COL = 'Columbus'
PIT = 'Pittsburgh'
WDC = 'Washington'
DUR = 'Durham'
NYC = 'New York'
PHI = 'Philadelphia'

Find the shortest route from St. Louis to New York
Efficiency Considerations

• For large graphs and frequent use, efficiency matters
• Consider breadth-first

```python
def gbf(G, u):
    q = []
    VT = []
    q.append(u)
    while len(q) > 0:
        u = q.pop(0)
        VT.append(u)
        for v in neighbors(u, G):
            if v not in VT and v not in q:
                q.append(v)
```

• Operations in red can be expensive for large graphs or long paths
• Need to access any neighbor of any node in a large graph, or any item in a list, quickly
• What to do? Hashing
The *Purpose* of Hashing

- Lists are slow: To access item k takes k steps
- Lists need no addresses: Just follow next pointers
- Arrays are fast: To access item k takes 1 step
- Arrays require dense numerical addresses: 1, 2, ..., n
 - *Hashing* is a method to convert anything (immutable) to a number
 - Think `hash('St. Louis') \rightarrow 37 ...`
 - But done so that all numbers are packed tightly
 - Then everything can be stored in “arrays” for fast access
 - We’ll see later in the course how this can be achieved
 - Hashing yields (almost) the best of both worlds: universal indexing, fast access
 - Comes for free in Python: `dict()`
Python Dictionaries

- Hashing, and the consequent ability to use dictionaries is why Python distinguishes between mutable and immutable objects
- You can hash a tuple `(a, b)`
- You cannot hash a list `[a, b]`
- `hash((a, b))` is always the same
- So we can access later what we store now
- `hash([a, b])` could change: disaster!
Python Dictionary Example

- Roads connect Pittsburgh and Philadelphia directly to New York City

```python
NYCneigh = {'Pittsburgh': 371, 'Philadelphia': 97}
```

- Numbers here are distances in miles, not hash codes!

- 'Pittsburgh' is the key, 371 is the value

- Hashing occurs under the hood: Python converts 'Pittsburgh' to some internal number

- Alternative syntax:

```python
NYCneigh = dict()
NYCneigh['Pittsburgh'] = 371
NYCneigh['Philadelphia'] = 97
```

- Either way, NYCneigh['Philadelphia'] returns 97

- Access is constant-time on average
A Simple Graph Implementation

- Use a dict of dicts to store edges and distances
- (Say STL = 'St. Louis' to save typing)

```python
d = {
    STL: {'CHI': 297, 'IND': 243, 'NAS': 309},
    CHI: {'STL': 297, 'IND': 183, 'CLE': 345},
    IND: {'STL': 243, 'CHI': 183, 'CLE': 317, 'COL': 175, 'NAS': 289},
    NAS: {'STL': 309, 'IND': 289, 'COL': 379, 'DUR': 516},
    CLE: {'CHI': 345, 'IND': 317, 'COL': 142, 'PIT': 134},
    COL: {'IND': 175, 'NAS': 379, 'CLE': 142, 'PIT': 185, 'WDC': 397, 'DUR': 458},
    PIT: {'CLE': 134, 'COL': 185, 'WDC': 242, 'PHI': 304, 'NYC': 371},
    WDC: {'COL': 397, 'PIT': 242, 'PHI': 139, 'DUR': 258},
    DUR: {'NAS': 516, 'COL': 458, 'WDC': 258},
    NYC: {'PIT': 371, 'PHI': 97},
    PHI: {'PIT': 304, 'WDC': 139, 'NYC': 97}
}
```

- Think of it as a sparse 11×11 matrix of distances where rows and columns are indexed by city names
- Call it d instead of G to emphasize distances

```python
d['Nashville']['Durham'] = 516
d['Nashville']['New York'] generates a key error
```
How Do We Store the Tree?

- Traversal of a graph G yields a tree T, at least conceptually
- T stores paths from St. Louis to all other cities
- Once we find b, we only need a tree T to trace our way back from b to a in T to form the route
- If we only traverse the tree from leaf to root, we don’t need to know where the root is
- Each vertex in G just needs to know its parent

![Graph Diagram]

- From b, we can follow the pointers back to a
- This is an *upward-linked tree*: One pointer up rather than n pointers down: lightweight!
Graph Implementation

Upward-Linked Tree Implementation

- A dictionary for the parent of each node traversed:
 \[\text{parent} = \text{dict}() \]
- If \(u \) is the parent of \(v \):
 \[\text{parent}[v] = u \]
 For the first node traversed:
 \[\text{parent}[a] = \text{None} \]
- To trace our steps back from \(b \) to \(a \):
 \[\text{path} = \text{backtrack}(b, \text{parent}) \]
 where
  ```python
def backtrack(dest, parent):
    path = []
    u = dest
    while u:
      path.insert(0, u)
      u = parent[u]
    return path
  ```

 - Insert \(u \) at the \textit{beginning} of \text{path} because we are going backwards
 - Simple, no?
A First Google Maps

• Find some route between a and b
• Breadth-first traversal, stop at b (partial tree only)
• Upwards-linked tree
• Use dict to store VT for efficiency

```python
def route(d, a, b):
    q = []  # queue
    q.append(a)
    parent = dict()  # upward-linked tree
    parent[a] = None  # root has no parent
    VT = dict()  # vertices traversed (dictionary!)
    while len(q) > 0:
        u = q.pop(0)  # fewest edges from $a$
        VT[u] = True  # value is irrelevant
        if u is b: return backtrack(u, parent)  # Done!
        for v in neighbors(u, d):  # Fast!
            if v not in VT and v not in q:  # Fast!
                q.append(v)
                parent[v] = u
    return None  # Did not find $b$ anywhere
```
A More Useful Google Maps?

STL = 'St. Louis'
CHI = 'Chicago'
IND = 'Indianapolis'
NAS = 'Nashville'
CLE = 'Cleveland'
COL = 'Columbus'
PIT = 'Pittsburgh'
WDC = 'Washington'
DUR = 'Durham'
NYC = 'New York'
PHI = 'Philadelphia'

```
print(*route(d, STL, NYC), sep=', ')
```

St. Louis, Chicago, Cleveland, Pittsburgh, New York

- Seems a bit long, but it’ll get you there
- How to find the *shortest* route?
Key change: **closest-first** rather than breadth-first

Among the cities on the current queue, ...

Breadth-first: ... pick the city that is the fewest edges away from a

This is what the queue ensures: few edges from $a \rightarrow$ ahead in the queue

Closest-first: pick the city that is closest to a in miles

Need to manage the queue differently
The Priority Queue

• We want an “unfair queue” that always returns the city that is closest to \(a \), as opposed to the first one to be queued
• This is called a priority queue, a data structure that works on keys (city names in the example) and values (distances from \(a \)) and performs at least the following operations efficiently:
 • Make an empty queue
 • Add a key to the queue and associate a value to it
 • Return the key with lowest value in the queue, and remove it from the queue
 • Change the value (and therefore the position in the queue) for a key already in the queue
 • Delete the queue
The Python `heapdict` Module

- The Python `heapdict` module implements a priority queue as a dictionary, so we can also quickly find the value of any key.
- Not a standard module, so you need to first `python3 -m pip install heapdict`.
- Then `from heapdict import *`.
- The syntax is beautifully simple:
 - `pq = heapdict()` creates a priority queue.
 - `pq[key] = value` inserts a key and its value.
 - `pq[key] = value` also changes the value of a key already in the queue.
 - `key, value = pq.popitem()` returns the key, value pair with lowest value and removes it from the queue.
 - `value = pq[key]` returns the value of the key (and leaves the queue unmodified).
 - `del pq` deletes the queue.
Closest-First Traversal: Terminology

- Source city: \(a \)
- Destination city: \(b \)
- \(d(u, v) \): edge distance, miles between \(u \) and \(v \), encoded as weights of the road-graph edges
- \(D_v \): at the current time in the algorithm, length of the shortest route found so far from \(a \) to \(v \)
- \(\text{parent}(v) \): the city just before \(v \) in the shortest route so far from \(a \) to \(v \)
Closest-First Traversal: Three Key Sets

- **\(C \) (Completed):** Cities for which the final shortest route has been found
- **\(Q \) (Queued):** All cities (i) whose parent is in \(D \), and (ii) is still under consideration
- **\(U \):** Untraversed cities
- **\(U \)** should not figure anywhere in the algorithm (too large!)
Example

STL = 'St. Louis'
CHI = 'Chicago'
IND = 'Indianapolis'
NAS = 'Nashville'
CLE = 'Cleveland'
COL = 'Columbus'
PIT = 'Pittsburgh'
WDC = 'Washington'
DUR = 'Durham'
NYC = 'New York'
PHI = 'Philadelphia'

Nodes: **Queued, Complete, Untraversed.**
Green Edges: Part of Final Tree
Closest-First Traversal: Algorithmic Idea

- Put a in Q (priority queue), with distance $D_a = 0$
- As long as the queue is not empty:
 - Pop (u, D_u) from Q. This is the closest city in the queue that is reachable from a and is still under consideration
 - So put u into C
- If u is b, we are done: trace the route back from b to a
- Otherwise, for all neighbors v of u not in C:
 - The shortest route from a to v such that $u = \text{parent}(v)$ has length $\delta = D_u + d(u, v)$
 - Case 1: v already in Q: update D_v to δ if $\delta < D_v$
 - Case 2: v in U: add it to Q with $D_v = \delta$
 - If D_v has changed, record $\text{parent}(v) = u$
Closest-First Traversal: Key Point

- When we pop \(u \) off \(Q \), we put it into \(C \), the set of nodes we no longer touch (“complete”)
- Why?
 - There is no way to decrease \(D_u \) further, because
 - Routes through other cities in \(Q \) are longer
 - We must go through some city in \(Q \) to reach \(u \) from \(a \)

- Therefore, we are done with \(u \) forever
Closest-First Traversal: Code

def dijkstra(d, a, b):
 Q = heapdict()
 parent = dict()
 C = dict()
 Q[a], parent[a] = 0, None
 while len(Q):
 u, Du = Q.popitem()
 C[u] = True
 if u is b: return backtrack(u, parent), Du
 for v in neighbors(u, d):
 if v not in C:
 Dv = Q[v] if v in Q else inf
 delta = Du + d[u][v]
 if delta < Dv:
 Q[v], parent[v] = delta, u
 return None, inf
Some route: route(d, STL, NYC)
['St. Louis', 'Chicago', 'Cleveland', 'Pittsburgh', 'New York']

Computing distance by hand yields \(D(a, b) = 1147 \) miles

Shortest route: dijkstra(d, STL, NYC)
(["St. Louis", 'Indianapolis', 'Columbus', 'Pittsburgh', 'New York'], 974)