Announcements

• Homework #1 out today
 – Due next Thursday in class
• Sign up to present a research paper
 – Sign-up sheet available in my office (D327) during my office hours
 • First-come, first-serve
 – Participation is voluntary
 • Allows you to drop your lowest homework grade
 – In groups of 2-4

Relational model: a review

• A database is a collection of relations (or tables)
• Each relation has a list of attributes (or columns)
• Each attribute has a domain (or type)
• Each relation contains a set of tuples (or rows)
Keys

- A set of attributes K is a key for a relation R if
 - In no instance of R will two different tuples agree on all attributes of K
 - That is, K is a “tuple identifier”
 - No proper subset of K satisfies the above condition
 - That is, K is minimal
- Example: $\text{Student} (\text{SID, name, age, GPA})$

More examples of keys

- Enroll (SID, CID)
 - $\text{Address (street_address, city, state, zip)}$

Schema versus data

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>10</td>
<td>2.3</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>10</td>
<td>3.1</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>8</td>
<td>4.3</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>8</td>
<td>2.3</td>
</tr>
</tbody>
</table>

- Is name a key of Student?
 - Yes?
 - No!
- Key declarations are part of the schema
Usage of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
 - Many selection conditions are “key = value”
- “Pointers”
 - Example: Enroll (SID, CID)

- Many join conditions are “key = key value stored in another table”

Functional dependencies

- A functional dependency (FD) has the form \(X \rightarrow Y\), where \(X\) and \(Y\) are sets of attributes in a relation \(R\)
- \(X \rightarrow Y\) means that whenever two tuples in \(R\) agree on all the attributes of \(X\), they must also agree on all attributes of \(Y\)

FD examples

Address (street_address, city, state, zip)
Keys redefined using FDs

A set of attributes K is a key for a relation R if

- That is, K is a "super key"
- No proper subset of K satisfies the above condition
 - That is, K is minimal

Reasoning with FDs

Given a relation R and set of FDs F

- Does another FD follow from F?
 - Are some of the FDs in F redundant (because they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FDs F that holds in R, and a set of attributes Z in R: The closure of Z with respect to F (denoted Z^*) is the set of all attributes functionally determined by Z
- Algorithm for computing the closure
A more complex example

StudentGrade (SID, name, email, CID, grade)

- SID \rightarrow name, email
- email \rightarrow SID
- SID, CID \rightarrow grade

- Not a good design, and we will see why later

Example of computing closure

- $\{ CID, email \}^* = ?$

Using attribute closure

Given a relation R and set of FDs F

- Does another FD $X \rightarrow Y$ follow from F?

- Is K a key of R?
Rules of FDs

- Armstrong’s axioms
 - Reflexivity: If \(Y \subseteq X \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

- Rules derived from axioms
 - Splitting: If \(X \rightarrow YZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)
 - Combining: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)

Using rules of FDs

Given a relation \(R \) and set of FDs \(F \)

- Does another FD \(X \rightarrow Y \) follow from \(F \) ?
 - Use the rules to come up with a proof
 - Example: \(CID, email \rightarrow grade? \)

Non-key FDs

- Consider a non-trivial FD \(X \rightarrow Y \) where \(X \) is not a super key
 - Since \(X \) is not a super key, there are some attributes (say \(Z \)) that are not functionally determined by \(X \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

The fact that “a” is always associated with “b” is recorded in multiple rows: redundancy!
Problems with redundancy

StudentGrade (SID, name, email, CID, grade)

\[SID \rightarrow name, email \]

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS 216</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS 214</td>
<td>B+</td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS 216</td>
<td>B+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS 216</td>
<td>A+</td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS 130</td>
<td>A+</td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS 214</td>
<td>C</td>
</tr>
</tbody>
</table>

Decomposition

\[SID \rightarrow name, email \]

\[SID \rightarrow CID, grade \]

- Eliminates redundancy
- To get back to the original relation:

Unnecessary decomposition

<table>
<thead>
<tr>
<th>SID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>857</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>456</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lossless join decomposition

- Suppose that R is decomposed into S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- It is a lossless join decomposition if, given constraints such as FDs, we can guarantee $R = S \bowtie T$

Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations
Questions about decomposition

- When to decompose
- How to come up with a correct decomposition

An answer: BCNF

- A relation R is in Boyce-Codd Normal Form if
 - For every non-trivial FD $X \rightarrow Y$ in R, X is a super key
 - That is, all FDs follow from “key \rightarrow other attributes”
- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it’s a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (Z contains all attributes of R that are in neither X nor Y)
- Repeat until all relations are in BCNF
BCNF decomposition example

\[\text{StudentGrade (SID, name, email, CID, grade)} \]

Another example

\[\text{StudentGrade (SID, name, email, CID, grade)} \]

Why is BCNF decomposition lossless

- Given non-trivial \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \), need to prove:
 - Anything we project always comes back in the join:
 \[R \subseteq \Pi_{XY}(R)
 \rightarrow \Pi_{XZ}(R) \]
 - Sure; and it doesn’t depend on the FD
 - Anything that comes back in the join must be in the original relation:
 \[R \supseteq \Pi_{XY}(R)
 \rightarrow \Pi_{XZ}(R) \]
Yet another example

- Address (street_address, city, state, zip)
 - street_address, city, state → zip
 - zip → city, state
- Keys
- BCNF?

To decompose, or not to decompose

Address₁ (zip, city, state)
Address₂ (street_address, zip)
- FDs in Address₁
- FDs in Address₂

“Elegant” solution

- Define the problem away!
- R is in Third Normal Form (3NF) if for every non-trivial FD X → A, either
 - X is super key of R, or
 - A is a member of at least one key of R
- So Address is already in 3NF
- Tradeoff
Recap

- Identifying tuples: keys
- Generalizing the key concept: FDs
- Non-key FDs: redundancy
- Avoiding redundancy: BCNF decomposition
- Preserving FDs: 3NF

What’s next

- Another kind of dependency and normal form
- A comprehensive design example
- SQL basics