Correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- Executing correlated subquery is expensive
 - The subquery is evaluated once for every CPS course

- Decorrelate!

COUNT bug

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- SELECT CID
 FROM Course,
 (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS%';

First compute the enrollment for all courses.
Magic decorrelation

- Simple idea
 - Process the outer query using other predicates
 - To collect bindings for correlated variables in the subquery
 - Evaluate the subquery using the bindings collected
 - It is a join
 - Once for the entire set of bindings
 - Compared to once per binding in the na"ive approach
 - Use the result of the subquery to refine the outer query
 - Another join
- Name "magic" comes from a technique in recursive processing of Datalog queries

Magic example (slide 1)

- Original query
 - SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);

- Process the outer query without the subquery
 - CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';

- Collect bindings
 - CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;

Magic example (slide 2)

- Evaluate the subquery with bindings
 - CREATE VIEW DS AS
 SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID;
 UNION
 SELECT Magic.CID, 0 AS cnt -- the COUNT patch
 FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);

- Finally, refine the outer query
 - SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;
Summary of query rewrite

- Break the artificial boundary between queries and subqueries
- Combine as many query blocks as possible in a select-project-join block, where the clean rules of relational algebra apply
- Handle with care—extremely tricky with duplicates, NULL’s, empty tables, and correlation

Review of the bigger picture

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine blocks as much as possible
 - Optimize query block by block
 - Enumerate logical and physical plans (Thursday)
 - Estimate the cost of plans (today)
 - Pick a plan with acceptable cost (Thursday)
 - Focus: select-project-join blocks

Cost estimation

Physical plan example:

- PROJECT (title)
- MERGE-JOIN (CID)
- MERGE-JOIN (SID)
- SCAN (Course)
- SORT (CID)
- SCAN (Course)
- FILTER (name = 'Bart')
- SORT (SID)
- SCAN (Enroll)
- SCAN (Student)

- We have: cost estimation for each operator
 - Example: SORT(CID) takes $2 \times B(input)$
 - But what is $B(input)$?
- We need: size of intermediate results
Selections with equality predicates

- \(Q: \sigma_{A = v} R \)
- Suppose the following information is available
 - Size of \(R \): \(| R |\)
 - Number of distinct \(A \) values in \(R \): \(| \pi_A R | \)
- Assumptions
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformed distributed over all \(R.A \) values
- \(| Q | \approx | R | / (| \pi_A R |)
 - Selectivity factor of \(A = v \) is \(1 / | \pi_A R | \)

Conjunctive predicates

- \(Q: \sigma_{A = u \text{ AND } B = v} R \)
- Additional assumptions
 - \(A = u \) and \(B = v \) are independent
 - Counterexample: major and advisor
 - No “over”-selection
 - Counterexample: \(A \) is the key
- \(| Q | \approx | R | / (| \pi_A R | \cdot | \pi_B R |)
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

- \(Q: \sigma_{A < > v} R \)
 - \(| Q | \approx | R | \cdot (1 - 1 / | \pi_A R |)
 - Selectivity factor of \(\neg p \) is \((1 - \text{selectivity factor of } p)\)
- \(Q: \sigma_{A = u \text{ OR } B = v} R \)
 - \(| Q | \approx | R | \cdot (1 / | \pi_A R | + 1 / | \pi_B R |)\)
 - No!
 - \(| Q | \approx | R | \cdot (1 - (1 - 1 / | \pi_A R |) \cdot (1 - 1 / | \pi_B R |))\)
 - Intuition: \(A = u \) OR \(B = v \) is equivalent to
 \(\neg (\neg (A = u) \text{ AND } \neg (B = v)) \)
Range predicates

- $Q: \sigma_{A > v} R$
- Not enough information!
 - Just pick $|Q| = |R| \cdot 1/3$
- With more information
 - Largest $R.A$ value: high($R.A$)
 - Smallest $R.A$ value: low($R.A$)
 - $|Q| = |R| \cdot \frac{\text{high}(R.A) - v}{\text{high}(R.A) - \text{low}(R.A)}$
 - In practice: sometimes the second highest and lowest are used instead

Two-way equi-join

- $Q: R(A, B) \bowtie S(A, C)$
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- $|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|)$
- Selectivity factor of $R.A = S.A$ is $1 / \max(|\pi_A R|, |\pi_A S|)$

Multiway equi-join (slide 1)

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- What is the number of distinct C values in the join of R and S?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if A is in R but not S, then $\pi_A (R \bowtie S) = \pi_A R$
 - Certainly not true in general
 - But holds in the common case of foreign key joins
Multiway equi-join (slide 2)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(| R | \cdot | S | \cdot | T | \)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B \): \(1 / \max(| \pi_B R |, | \pi_B S |) \)
 - \(S.C = T.C \): \(1 / \max(| \pi_C S |, | \pi_C T |) \)
 - \(| Q | = (| R | \cdot | S | \cdot | T |) / (\max(| \pi_B R |, | \pi_B S |) \cdot \max(| \pi_C S |, | \pi_C T |)) \)

Multiway equi-join (slide 3)

- A slightly more complicated example
 \(Q: R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
 - \(A \) is common to all three tables
 - \(R.A = S.A \) AND \(R.A = T.A \) AND \(S.A = T.A \)
 - Suppose \(| \pi_A R | \) is the smallest; consider only \(R.A = S.A \) and \(R.A = T.A \) (\(S.A = T.A \) is implied)
 - \(| Q | = (| R | \cdot | S | \cdot | T |) / (\max(| \pi_A R |, | \pi_A S |) \cdot \max(| \pi_A R |, | \pi_A T |)) \)
 - \(= (| R | \cdot | S | \cdot | T |) / (\max(| \pi_A R |, | \pi_A S | \cdot | \pi_A T |)) \)
- In general, if a join attribute \(A \) appears in multiple tables \(R_1, R_2, \ldots, R_n \)
 - Divide the total size by the all but the least of \(| \pi_A R_i | \)

Summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Fine if we overestimate or underestimate consistently
 - Sometimes may lead to very nasty optimizer "hints"
 - \(\text{SELECT} * \text{FROM Student WHERE GPA > 3.9;} \)
 - \(\text{SELECT} * \text{FROM Student WHERE GPA > 3.9 AND GPA > 3.9;} \)
Better estimation using histograms

- **Motivation**
 - Too little information
 - Actual distribution of $R.A$: $(v_1, f_1), (v_2, f_2), \ldots, (v_n, f_n)$
 - f_i is frequency of v_i, or the number of times v_i appears as $R.A$
 - Too much information
 - Anything in between?
- **Idea**
 - Partition the domain of $R.A$ into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the “knob” that controls the resolution

Equi-width histogram

- Divide the domain into B buckets of equal width
- Store the bucket boundaries and the sum of frequencies of the values within each bucket

Construction and maintenance

- **Construction**
 - If high($R.A$) and low($R.A$) are known, use one pass over R to construct an accurate equi-width histogram
 - Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - Construct a histogram on R_{sample} and scale frequencies by $|R|/|R_{sample}|$
- **Maintenance**
 - Incremental maintenance: for each update on R, increment/decrement the corresponding bucket frequencies
 - Periodical recomputation: because distribution changes slowly
Using an equi-width histogram

- $Q: \sigma_{A = 5} R$
 - 5 is in bucket [5, 8] (with 19 tuples)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 19/4 \approx 5$
 ($|Q| = 1$, actually)

- $Q: \sigma_{A \geq 7 \text{ AND } A \leq 16} R$
 - [7, 16] covers [9, 12] (27) and [13, 16] (13)
 - [7, 16] partially covers [5, 8] (19)
 - $|Q| \approx 19/2 + 27 + 13 \approx 50$
 ($|Q| = 52$, actually)

Equi-height histogram

- Divide the domain into B buckets with roughly the same number of tuples in each bucket
- Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies

Construction and maintenance

- Construction
 - Sort all $R.A$ values, and then take equally spaced splits
 - Example: 1 2 2 3 4 5 6 7 8 9 10 10 10 11 11 12 12 14 16 …
 - Sampling also works
- Maintenance
 - Incremental maintenance
 - Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works
Using an equi-height histogram

• \(Q: \sigma_{A-5} R \)
 – 5 is in bucket \([1, 7]\) (16)
 – Assume uniform distribution within the bucket
 – \(|Q| \approx 16/7 \approx 2\)
 \(|Q| = 1\), actually

• \(Q: A \geq 7 \text{ AND } A \leq 16 \quad R \)
 – \([7, 16]\) covers \([8, 9], [10, 11], [12, 16]\) (all with 16)
 – \([7, 16]\) partially covers \([1, 7]\) (16)
 – \(|Q| \approx 16/7 + 16 + 16 + 16 \approx 50\)
 \(|Q| = 52\), actually

Histogram tricks

• Store the number of distinct values in each bucket
 – To get rid of the effects of the values with 0 frequency
 – These values tend to cause underestimation

• Compressed histogram
 – Store \((v_i, f_i)\) pairs explicitly if \(f_i\) is high
 – For other values, use an equi-width or equi-height histogram

More histograms

• V-optimal histogram
 – Avoid putting very different frequencies into the same bucket
 – Partition in a way to minimize \(\sum VAR_i\), where \(VAR_i\) is the frequency variance within bucket \(i\)

• MaxDiff histogram
 – Define area to be the product of the frequency of a value and its “spread” (the difference between this value and the next value with non-zero frequency)
 – Insert bucket boundaries where two adjacent areas differ by large amounts

• More in Poosala et al., SIGMOD 1996
Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals
- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>[0, –1, –1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[–1.25]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>–1.25</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]

Haar wavelet coefficients

- Hierarchical decomposition structure

![Wavelet Coefficients Diagram]

Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution (Matias et al., SIGMOD 1998)
 - The function to transform is the distribution function which maps v_i to f_i
- Steps
 - Compute cumulative data distribution function $C(v)$
 - $C(v)$ is the number of tuples with $R.d \leq v$
 - Compute wavelet transform of C
 - Coefficient thresholding: keep only the largest coefficients in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution j by $2^{j/2}$
Using a wavelet-based histogram

- \(Q: \sigma_A > u \text{ AND } A \leq v \)
- \(|Q| = C(v) - C(u) \)
- Search the tree to reconstruct \(C(v) \) and \(C(u) \)
 - Worst case: two paths, \(O(\log N) \), where \(N \) is the size of the domain
 - If we just store \(B \) coefficients, it becomes \(O(B) \), but answers are now approximate