Correlated subqueries

- Executing correlated subquery is expensive
 - The subquery is evaluated once for every CPS course
 ➢ Decorrelate!

COUNT bug

- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- Suppose a CPS class is empty
 – The first query returns this course; the second does not

Magic decorrelation

- Simple idea
 - Process the outer query using other predicates
 - To collect bindings for correlated variables in the subquery
 - Evaluate the subquery using the bindings collected
 • It is a join
 • Once for the entire set of bindings
 – Compared to once per binding in the naïve approach
 – Use the result of the subquery to refine the outer query
 • Another join
 - Name “magic” comes from a technique in recursive processing of Datalog queries

Magic example (slide 1)

- Original query
 – SELECT CID FROM Course
 WHERE title LIKE 'CPS%'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
 – Process the outer query without the subquery
 – CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE 'CPS%';
 – Collect bindings
 – CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;

Magic example (slide 2)

- Evaluate the subquery with bindings
 – CREATE VIEW DS AS
 SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll
 WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID;
 – UNION
 SELECT Magic.CID, 0 AS cnt -- the COUNT patch
 FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll);
 – Finally, refine the outer query
 – SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;
Summary of query rewrite

- Break the artificial boundary between queries and subqueries
- Combine as many query blocks as possible in a select-project-join block, where the clean rules of relational algebra apply
- Handle with care—extremely tricky with duplicates, NULL’s, empty tables, and correlation

Review of the bigger picture

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine blocks as much as possible
 - Optimize query block by block
 - Enumerate logical and physical plans (Thursday)
 - Estimate the cost of plans (today)
 - Pick a plan with acceptable cost (Thursday)
 - Focus: select-project-join blocks

Cost estimation

Physical plan example:

```
PROJECT (title)  MERGE-JOIN (CID)  SCAN (Course)
MERGE-JOIN (SID)  SCAN (Enroll)
SORT (SID)  SCAN (Student)
FILTER (name = 'Bart')
```

- We have: cost estimation for each operator
 - Example: SORT(CID) takes $2 \times B(input)$
 - But what is $B(input)$?
- We need: size of intermediate results

Selections with equality predicates

- $Q: \sigma_{A = v} R$
- Suppose the following information is available
 - Size of R: $|R|$
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
 - Values of v in Q are uniformly distributed over all RA values
- $|Q| \approx |R| \cdot \frac{1}{|\pi_A R|}$
 - Selectivity factor of $A = v$ is $\frac{1}{|\pi_A R|}$

Conjunctive predicates

- $Q: \sigma_A = u \text{ AND } B = v R$
- Additional assumptions
 - $A = u$ and $B = v$ are independent
 - Counterexample: major and advisor
 - No “over”-selection
 - Counterexample: A is the key
- $|Q| \approx |R| \cdot (|\pi_A R| \cdot |\pi_B R|)$
 - Reduce total size by all selectivity factors

Negated and disjunctive predicates

- $Q: \sigma_A < v \text{ OR } B = v R$
 - $|Q| \approx |R| \cdot (1 - \frac{1}{|\pi_B R|})$
 - No! Tuples satisfying $A = u \text{ OR } B = v$ are counted twice
- $|Q| \approx |R| \cdot (1 - \frac{1}{|\pi_A R|}) \cdot (1 - \frac{1}{|\pi_B R|})$
 - Intuition: $A = u \text{ OR } B = v$ is equivalent to $\neg(\neg(A = u) \text{ AND } \neg(B = v))$
Range predicates

- \(Q: \sigma_{A > a} R \)
- Not enough information!
 - Just pick \(|Q| = |R| \cdot 1/3 \)
- With more information
 - Largest \(R.A \) value: \(\text{high}(R.A) \)
 - Smallest \(R.A \) value: \(\text{low}(R.A) \)
 - \(|Q| = \min(\text{high}(R.A) - a, \text{low}(R.A) - a) / (\text{high}(R.A) - \text{low}(R.A)) \)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designers to represent invalid values

Multiway equi-join (slide 1)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(|R| \cdot |S| \cdot |T| = |R| \cdot |S| \cdot \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins

Multiway equi-join (slide 2)

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- Start with the product of relation sizes
 - \(|R| \cdot |S| \cdot |T| \)
- Reduce the total size by the selectivity factor of each join predicate
 - \(R.B = S.B: 1 / \max(|\pi_R R|, |\pi_S S|) \)
 - \(S.C = T.C: 1 / \max(|\pi_S S|, |\pi_C T|) \)
 - \(|Q| \approx (|R| \cdot |S| \cdot |T|) / (\max(|\pi_R R|, |\pi_S S|) \cdot \max(|\pi_C S|, |\pi_C T|)) \)

Multiway equi-join (slide 3)

- A slightly more complicated example
 \(Q: R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
 - \(A \) is common to all three tables
 - \(R.A = S.A AND R.A = T.A AND S.A = T.A \)
 - Suppose \(|\pi_A R| \) is the smallest; consider only \(R.A = S.A \) and \(R.A = T.A (S.A = T.A \) is implied)
 - \(|Q| = (|R| \cdot |S| \cdot |T|) / (\max(|\pi_A R|, |\pi_A S|) \cdot \max(|\pi_A R|, |\pi_A T|)) \)
 - In general, if a join attribute \(A \) appears in multiple tables \(R_1, R_2, \ldots, R_n \)
 - Divide the total size by the all but the least of \(|\pi_A R_i| \)

Two-way equi-join

- \(Q: R(A, B) \bowtie S(A, C) \)
- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S| \) then \(\pi_A R \subseteq \pi_A S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx |R| \cdot |S| / \max(|\pi_A R|, |\pi_A S|) \)
- Selectivity factor of \(R.A = S.A \) is \(1 / \max(|\pi_A R|, |\pi_A S|) \)

Summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Fine if we overestimate or underestimate consistently
 - Sometimes may lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
Better estimation using histograms

- **Motivation**
 - $| R |$, $| \pi R |$, high($R.A$), low($R.A$)
 - Too little information
 - Actual distribution of $R.A$: ($v_1, f_1), (v_2, f_2), \ldots, (v_n, f_n)$
 - f_i is frequency of v_i, or the number of times v_i appears as $R.A$
 - Too much information
 - Anything in between?
- **Idea**
 - Partition the domain of $R.A$ into buckets
 - Store a small summary of the distribution within each bucket
 - Number of buckets is the “knob” that controls the resolution

Construction and maintenance

- **Construction**
 - If high($R.A$) and low($R.A$) are known, use one pass over R to construct an accurate equi-width histogram
 - Keep a running count for each bucket
 - If scanning is unacceptable, use sampling
 - Construct a histogram on R_{sample}, and scale frequencies by $| R | / | R_{sample} |
- **Maintenance**
 - Incremental maintenance: for each update on R, increment/decrement the corresponding bucket frequencies
 - Periodical recomputation: because distribution changes slowly

Using an equi-width histogram

- $Q: \sigma_A = 5 R$
 - 5 is in bucket $[5, 8]$ (with 19 tuples)
 - Assume uniform distribution within the bucket
 - $| Q | \approx 19 / 4 \approx 5$ ($| Q | = 1$, actually)
- $Q: \sigma_A \geq 7 \text{ AND } A \leq 16 R$
 - $[7, 16]$ covers $[9, 12]$ (27) and $[13, 16]$ (13)
 - $[7, 16]$ partially covers $[5, 8]$ (19)
 - $| Q | \approx 19 / 2 + 27 + 13 \approx 50$ ($| Q | = 52$, actually)

Equi-height histogram

- Divide the domain into B buckets with roughly the same number of tuples in each bucket
- Store this number and the bucket boundaries
- Intuition: high frequencies are more important than low frequencies

Construction and maintenance

- **Construction**
 - Sort all $R.A$ values, and then take equally spaced splits
 - Example: $1 \ 2 \ 2 \ 3 \ 4 \ 7 \ 8 \ 9 \ 10 \ 10 \ 10 \ 10 \ 11 \ 11 \ 12 \ 12 \ 14 \ 14 \ 16 \ \ldots$
 - Sampling also works
- **Maintenance**
 - Incremental maintenance
 - Merge adjacent buckets with small counts
 - Split any bucket with a large count
 - Select the median value to split
 - Need a sample of the values within this bucket to work well
 - Periodic recomputation also works
Using an equi-height histogram

- $Q: \sigma_{4-5} \Rightarrow \sigma_R$
 - 5 is in bucket $[1, 7]$ (16)
 - Assume uniform distribution within the bucket
 - $|Q| \approx 16/7 \approx 2$ ($|Q| = 1$, actually)
- $Q: \sigma_{A \geq 7 \text{ AND } A \leq 16} \Rightarrow \sigma_R$
 - $[7, 16]$ covers $[8, 9], [10, 11], [12, 16]$ (all with 16)
 - $[7, 16]$ partially covers $[1, 7]$ (16)
 - $|Q| \approx 16/7 + 16 + 16 + 16 \approx 50$ ($|Q| = 52$, actually)

Histogram tricks

- Store the number of distinct values in each bucket
 - To get rid of the effects of the values with 0 frequency
 - These values tend to cause underestimation
- Compressed histogram
 - Store (v, f) pairs explicitly if f_i is high
 - For other values, use an equi-width or equi-height histogram

More histograms

- V-optimal histogram
 - Avoid putting very different frequencies into the same bucket
 - Partition in a way to minimize $\sum VAR_i$, where VAR_i is the frequency variance within bucket i
- MaxDiff histogram
 - Define area to be the product of the frequency of a value and its “spread” (the difference between this value and the next value with non-zero frequency)
 - Insert bucket boundaries where two adjacent areas differ by large amounts
- More in Poosala et al., SIGMOD 1996