Query Optimization

CPS 216
Advanced Database Systems

Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals
- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4]</td>
<td>[0, –1, –1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0.5, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td>[–1.25]</td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]

Haar wavelet coefficients

- Hierarchical decomposition structure
Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution (Matias et al., SIGMOD 1998)
 - The function to transform is the distribution function which maps \(v \) to \(f_j \)
- Steps
 - Compute cumulative data distribution function \(C(v) \)
 - \(C(v) \) is the number of tuples with \(R.A \leq v \)
 - Compute wavelet transform of \(C \)
 - Coefficient thresholding: keep only the largest coefficients in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution \(j \) by \(2^{j/2} \)

Using a wavelet-based histogram

- \(Q: \sigma_A > u \text{ AND } A \leq v \text{ R} \)
- \(|Q| = C(v) - C(u) \)
- Search the tree to reconstruct \(C(v) \) and \(C(u) \)
 - Worst case: two paths, \(O(\log N) \), where \(N \) is the size of the domain
 - If we just store \(B \) coefficients, it becomes \(O(B) \), but answers are now approximate
- What about \(Q: \sigma_A = v \text{ R} \)?
 - Same as \(\sigma_A > v - 1 \text{ AND } A \leq v \text{ R} \)

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- Trade-off: better accuracy ↔ bigger size; higher construction and maintenance costs
Cost-based query optimization

- Review
 - Algorithms for physical plan operators (sorting, hashing, indexing, …)
 - Query execution techniques (buffer management, pipelining using the iterator interface…)
 - Query rewrite techniques (relational algebra equivalences, unnesting, decorrelating SQL queries…)
 - Cost estimation techniques (I/O analysis of algorithms, histograms…)
- Mission: searching for an “optimal” plan
 - Focus on select-project-join query blocks
 - Join ordering is the most important subproblem

Search space

- “Bushy” plan example:

- How many plans are there for \(R_1 \bowtie \ldots \bowtie R_n \)?
 - Lots
 - (30240 for \(n = 6 \))
- There are more!
 - How about multiway joins?
 - How about different join methods?
 - How about placement of selection and projection?

Left-deep plans

- Heuristic: consider only “left-deep” plans, wherein only the left child can be a join
 - Tend to be better than plans of other shapes
 - Many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for \(R_1 \bowtie \ldots \bowtie R_n \)?
 - Significantly fewer, but still lots—\(n! \)
 - (720 for \(n = 6 \))
A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_i = \sigma_{R_i}$
- Start with the pair S_i, S_j with the smallest estimated size for $S_i \bowtie S_j$
- Repeat until no relation is left:
 Pick S_i from the remaining relations such that the join of S_i and the current result yields an intermediate result of the smallest size

Current subplan

Remaining relations to be joined

Pick most efficient join method

Minimize expected size

Query optimization in System R

- A.k.a. Selinger-style query optimization
 - The classic paper on query optimization (Selinger et al., SIGMOD 1979)

- Basic ideas
 - Left-deep trees only
 - Bottom-up generation of plans
 - Interesting orders

Bottom-up plan generation

- Observation 1: Once we have joined k relations together, the method of joining this result further with another relation is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
 - Not exactly accurate (next slide)
- Bottom-up generation of optimal plans
 - Compute the optimal plans for joining k relations together
 - Suboptimal plans are pruned
 - From these plans, derive the optimal plans for joining $k+1$ relations together
Motivation for “interesting order”

Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

- When picking the optimal plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) relations
 - Typically one for each interesting order

System-R algorithm

- Pass 1: Find the best single-relation plans
- Pass 2: Find the best two-relation plans by considering each single-relation plan (from Pass 1) as the outer relation and every other relation as the inner relation
 ...
- Pass \(k \): Find the best \(k \)-relation plans by considering each \((k-1)\)-relation plan (from Pass \(k-1 \)) as the outer relation and every other relation as the inner relation
 ...
- Heuristics
 - Push selections and projections down
 - Process cross products at the end
Reasoning about predicates

- SELECT * FROM R, S, T
 WHERE R.A = S.A AND S.A = T.A;
- Looks like a cross product between R and T
 - No join condition
- But there is really a join between R and T
 - R.A = T.A is implied from the other two predicates
- A good optimizer should be able to detect this case and consider the possibility of joining R with T first

System-R algorithm example

- SELECT SID, CID
 FROM Student, Enroll, Course
 WHERE Student.age < 10
 AND Student.SID = Enroll.SID
 AND Enroll.CID = Course.CID
 AND Course.title LIKE '%data%';
- Primary keys/indexes
 - Student(SID), Enroll(CID, SID), Course(CID)
- Ordered, secondary indexes
 - Student(age), Course(title)

Example: pass 1

- Plans for {Student}
 - S1: Table scan, then filter (age < 10);
 cost 100; result ordered by SID
 - S2: Index scan using condition (age < 10);
 cost 5; result ordered by age
- Plans for {Enroll}
 - E1: Table scan;
 cost 1000; result ordered by CID, SID
- Plans for {Course}
 - C1: Table scan, then filter (title LIKE '%data%');
 cost 40; result ordered by CID
 - C2: Index scan, then filter (title LIKE '%data%');
 cost 160; result ordered by title
Example: pass 2

• Plans for \{Student, Enroll\}
 – Extending best plans for \{Student\}
 • From S1: table scan, then filter (name = 'Bart')
 – Block-based nested loop join with Enroll; cost 1100
 • Sort Enroll by SID, and merge join; cost 3100;
 ordered by SID
 – … …
 • From S2: index scan using condition (name = 'Bart')
 – Block-based nested loop join with Enroll; cost 1005
 – … …
 – Extending best plans for \{Enroll\} … …

Example: pass 2 continued

• Plans for \{Student, Course\}
 – Ignore; it is a cross product
• Plans for \{Enroll, Course\}
 – Extending best plans for \{Course\}
 • From C1: table scan, then filter (title LIKE '%data%')
 • Merge join; cost 1040
 – … …
 – Extending best plans for \{Enroll\} … …

Example: pass 3

• Finally, plans for \{Student, Enroll, Course\}
 – Extending best plans for \{Student, Enroll\}
 • (INDEX-SCAN(Student) NLJ Enroll) NLJ FILTER(Course); cost …
 – … …
 – Extending best plans for \{Student, Course\}
 • None!
 – Extending best plans for \{Enroll, Course\}
 • (FILTER(Course) SMJ Enroll) NLJ (INDEX-
 SCAN(Student)); cost …
 – … …
Considering bushy plans

Straightforward generalization:
- Store all optimal 1-relation, 2-relation, …, and k-relation plans
- To find the optimal plan for k+1 relations
 - For every possible partition of these relations into two groups, find the best ways of joining the optimal plans for the two groups
 - Store the overall optimal plans

Optimizer “blow-up”

- A 20-way join will easily choke an optimizer using the System-R algorithm
- Solutions
 - Heuristics-based query optimization
 - Randomized query optimization (Ioannidis & Kang, SIGMOD 1990)

Search space revisited
Transformations
Relational algebra equivalences
(or query rewrite rules in general):
• Join method choice: $R \bowtie_{\text{method}1} S \rightarrow R \bowtie_{\text{method}2} S$
• Join commutativity: $R \bowtie S \rightarrow S \bowtie R$
• Join associativity: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (S \bowtie T)$
• Left join exchange: $(R \bowtie S) \bowtie T \rightarrow R \bowtie (T \bowtie S)$
• Right join exchange: $R \bowtie (S \bowtie T) \rightarrow S \bowtie (R \bowtie T)$
• Why the last two redundant rules?
 – To avoid using the join commutativity rule, which does not change the cost of certain plans (e.g., sort-merge join)—creating plateaus in the plan space

Iterative improvement
• Repeat until some stopping condition (e.g., time runs out):
 – Start with a random plan
 – Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
• Return the smallest local optimum found

Simulated annealing
• Start with a plan and an initial temperature
• Repeat until temperature is 0:
 Repeat until some equilibrium (e.g., a fixed number of iterations):
 – Move to a random neighbor of the plan (an uphill move is allowed with probability $e^{-\Delta \text{cost} / \text{temperature}}$)
 – Reduce temperature
• Return the plan visited with the lowest cost
Two-phase optimization

• Phase I: run iterative improvement for a while to find a good local optimum
• Phase II: run simulated annealing with a low initial temperature to get more improvements

• Why does it tend to work better than both iterative improvement and simulated annealing?

Shape of the cost function

- An average local optimum has a much lower cost than an average plan
- The average distance between a random state and a local optimum is long
- There are lots of local optima
- Many local optima are connected together through low-cost plans within short distances

Comparison of randomized algorithms

- Iterative improvement
 - Too easily trapped in a local optimum
 - Too much work to restart
- Simulated annealing
 - Too much time spent on high-cost plans
- Two-phase
 - Phase I uses iterative improvement to get to the cup bottom quickly
 - Phase II uses simulated annealing to explore the cup bottom further