Wavelets

- Mathematical tool for hierarchical decomposition of functions and signals
- Haar wavelets: recursive pair-wise averaging and differencing at different resolutions
 - Simplest wavelet basis, easy to implement

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Averages</th>
<th>Detail coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[2, 2, 0, 2, 3, 5, 4, 4]</td>
<td>[0, –1, –1, 0]</td>
</tr>
<tr>
<td>2</td>
<td>[2, 1, 4, 4]</td>
<td>[0, 5, 0]</td>
</tr>
<tr>
<td>1</td>
<td>[1.5, 4]</td>
<td>[-2.75, –1.25]</td>
</tr>
<tr>
<td>0</td>
<td>[2.75]</td>
<td></td>
</tr>
</tbody>
</table>

Haar wavelet decomposition: [2.75, –1.25, 0.5, 0, 0, –1, –1, 0]

Wavelet-based histogram

- Idea: use a compact subset of wavelet coefficients to approximate the data distribution (Matias et al., SIGMOD 1998)
 - The function to transform is the distribution function which maps v_i to f_i
- Steps
 - Compute cumulative data distribution function $C(v)$
 - $|Q| = C(v) - C(u)$
 - Coefficient thresholding: keep only the largest coefficients in absolute normalized value
 - For Haar wavelets, divide coefficients at resolution j by $2^{j/2}$

Using a wavelet-based histogram

- $Q: \sigma_{A \geq u \text{ AND } A \leq v} R$
- $|Q| = C(v) - C(u)$
- Search the tree to reconstruct $C(v)$ and $C(u)$
 - Worst case: two paths, $O(\log N)$, where N is the size of the domain
 - If we just store B coefficients, it becomes $O(B)$, but answers are now approximate
- What about $Q: \sigma_{A = v} R$?
 - Same as $\sigma_{A > v - 1 \text{ AND } A \leq v} R$

Summary of histograms

- Wavelet-based histograms are shown to work better than traditional bucket-based histograms
- The trick of using cumulative distribution for range query estimation also works for bucket-based histograms
- Trade-off: better accuracy ↔ bigger size; higher construction and maintenance costs
Cost-based query optimization
- Review
 - Algorithms for physical plan operators (sorting, hashing, indexing, …)
 - Query execution techniques (buffer management, pipelining using the iterator interface…)
 - Query rewrite techniques (relational algebra equivalences, unnesting, decorrelating SQL queries…)
 - Cost estimation techniques (I/O analysis of algorithms, histograms…)
- Mission: searching for an “optimal” plan
 - Focus on select-project-join query blocks
 - Join ordering is the most important subproblem

Search space
- “Bushy” plan example:
- How many plans are there for \(R_1 \bowtie \ldots \bowtie R_n \)?
 - Lots—close to \((n-1)! \cdot 4^{(n-1)}\) (30240 for \(n = 6 \))
- There are more!
 - How about multiway joins?
 - How about different join methods?
 - How about placement of selection and projection?

Left-deep plans
- Heuristic: consider only “left-deep” plans, wherein only the left child can be a join
 - Tend to be better than plans of other shapes
 - Many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
 - How many left-deep plans are there for \(R_1 \bowtie \ldots \bowtie R_n \)?
 - Significantly fewer, but still lots—\(n! \) (720 for \(n = 6 \))

A greedy algorithm
- \(S_1, \ldots, S_k \)
 - Say selections have been pushed down; i.e., \(S_i = \sigma_{p_i} R_i \)
- Start with the pair \(S_i, S_j \) with the smallest estimated size for \(S_i \bowtie S_j \)
- Repeat until no relation is left:
 - Pick \(S_i \) from the remaining relations such that the join of \(S_i \) and the current result yields an intermediate result of the smallest size
 - Minimize expected size

Query optimization in System R
- A.k.a. Selinger-style query optimization
 - The classic paper on query optimization (Selinger et al., SIGMOD 1979)
- Basic ideas
 - Left-deep trees only
 - Bottom-up generation of plans
 - Interesting orders

Bottom-up plan generation
- Observation 1: Once we have joined \(k \) relations together, the method of joining this result further with another relation is independent of the previous join methods
- Observation 2: Any subplan of an optimal plan must also be optimal (otherwise we could replace the subplan to get a better overall plan)
 - Not exactly accurate (next slide)
- Bottom-up generation of optimal plans
 - Compute the optimal plans for joining \(k \) relations together
 - Suboptimal plans are pruned
 - From these plans, derive the optimal plans for joining \(k+1 \) relations together
Motivation for “interesting order”

Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
- Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, GROUP BY, ORDER BY, etc.)!

Dealing with interesting orders

- When picking the optimal plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) relations
 - Typically one for each interesting order

System-R algorithm

- Pass 1: Find the best single-relation plans
- Pass 2: Find the best two-relation plans by considering each single-relation plan (from Pass 1) as the outer relation and every other relation as the inner relation
- ... Pass \(k \): Find the best \(k \)-relation plans by considering each \((k-1)\)-relation plan (from Pass \(k-1 \)) as the outer relation and every other relation as the inner relation
- Heuristics
 - Push selections and projections down
 - Process cross products at the end

Reasoning about predicates

- \(\text{SELECT } * \text{ FROM } R, S, T \)
 \[\text{WHERE } R.A = S.A \text{ AND } S.A = T.A; \]
- Looks like a cross product between \(R \) and \(T \)
- No join condition
- But there is really a join between \(R \) and \(T \)
 - \(R.A = T.A \) is implied from the other two predicates
- A good optimizer should be able to detect this case and consider the possibility of joining \(R \) with \(T \) first

System-R algorithm example

- \(\text{SELECT SID, CID} \)
 \(\text{FROM Student, Enroll, Course} \)
 \(\text{WHERE Student.age < 10} \)
 \(\text{AND Student.SID = Enroll.SID} \)
 \(\text{AND Enroll.CID = Course.CID} \)
 \(\text{AND Course.title LIKE } \%\text{data}\%; \)
- Primary keys/indexes
 - Student(SID), Enroll(CID, SID), Course(CID)
- Ordered, secondary indexes
 - Student(age), Course(title)

Example: pass 1

- Plans for \{Student\}
 - S1: Table scan, then filter (age < 10);
 cost 100; result ordered by SID \(\leftrightarrow \) interesting order
 - S2: Index scan using condition (age < 10);
 cost 5; result ordered by age \(\leftrightarrow \) not an interesting order
- Plans for \{Enroll\}
 - E1: Table scan;
 cost 1000; result ordered by CID, SID \(\leftrightarrow \) interesting order
- Plans for \{Course\}
 - C1: Table scan, then filter (title LIKE \%data\%);
 cost 40; result ordered by CID \(\leftrightarrow \) interesting order
 - C2: Index scan, then filter (title LIKE \%data\%);
 cost 160; result ordered by title \(\leftrightarrow \) not an interesting order
Example: pass 2

- Plans for \{\text{Student, Enroll}\}
 - Extending best plans for \{\text{Student}\}
 - From S1: table scan, then filter (name = 'Bart')
 - Block-based nested loop join with Enroll; cost 1100
 - Sort Enroll by SID, and merge join; cost 3100;
 ordered by SID – no longer an interesting order
 - From S2: index scan using condition (name = 'Bart')
 - Block-based nested loop join with Enroll; cost 1005
 - Extending best plans for \{\text{Enroll}\} … …

Example: pass 2 continued

- Plans for \{\text{Student, Course}\}
 - Ignore; it is a cross product
- Plans for \{\text{Enroll, Course}\}
 - Extending best plans for \{\text{Course}\}
 - From C1: table scan, then filter (title LIKE '%data%')
 - Merge join; cost 1040
 - … …
 - Extending best plans for \{\text{Enroll}\} … …

Example: pass 3

- Finally, plans for \{\text{Student, Enroll, Course}\}
 - Extending best plans for \{\text{Student, Enroll}\}
 - (INDEX-SCAN(\text{Student}) NLJ Enroll) NLJ FILTER(Course); cost …
 - … …
 - Extending best plans for \{\text{Student, Course}\}
 - None!
 - Extending best plans for \{\text{Enroll, Course}\}
 - (FILTER(Course) SMJ Enroll) NLJ (INDEX-SCAN(\text{Student})); cost …
 - … …

Considering bushy plans

Straightforward generalization:
- Store all optimal 1-relation, 2-relation, …, and \(k\)-relation plans
- To find the optimal plan for \(k+1\) relations
 - For every possible partition of these relations into two groups, find the best ways of joining the optimal plans for the two groups
 - Store the overall optimal plans

Optimizer “blow-up”

- A 20-way join will easily choke an optimizer using the System-R algorithm

Solutions
- Heuristics-based query optimization
- Randomized query optimization (Ioannidis & Kang, SIGMOD 1990)

Search space revisited
Transformations

Relational algebra equivalences (or query rewrite rules in general):

- **Join method choice:** $R \bowtie_{\text{method}_1} S \rightarrow R \bowtie_{\text{method}_2} S$
- **Join commutativity:** $R \bowtie S \rightarrow S \bowtie R$
- **Join associativity:** $(R \bowtie S) \bowtie T \rightarrow R \bowtie (S \bowtie T)$
- **Left join exchange:** $(R \bowtie S) \bowtie T \rightarrow R \bowtie (T \bowtie S)$
- **Right join exchange:** $R \bowtie (S \bowtie T) \rightarrow S \bowtie (R \bowtie T)$

- Why the last two redundant rules?
 - To avoid using the join commutativity rule, which does not change the cost of certain plans (e.g., sort-merge join)—creating plateaus in the plan space

Iterative improvement

- Repeat until some stopping condition (e.g., time runs out):
 - Start with a random plan
 - Repeatedly go downhill (i.e., pick a neighbor with a lower cost randomly) to get to a local optimum
 - Return the smallest local optimum found

Simulated annealing

- Start with a plan and an initial temperature
- Repeat until temperature is 0:
 - Repeat until some equilibrium (e.g., a fixed number of iterations):
 - Move to a random neighbor of the plan (an uphill move is allowed with probability $e^{-\Delta \text{cost}/\text{temperature}}$)
 - Reduce temperature
 - Return the plan visited with the lowest cost

Two-phase optimization

- Phase I: run iterative improvement for a while to find a good local optimum
- Phase II: run simulated annealing with a low initial temperature to get more improvements

- Why does it tend to work better than both iterative improvement and simulated annealing?

Shape of the cost function

- An average local optimum has a much lower cost than an average plan
- The average distance between a random state and a local optimum is long
- There are lots of local optima
- Many local optima are connected together through low-cost plans within short distances

Comparison of randomized algorithms

- **Iterative improvement**
 - Too easily trapped in a local optimum
 - Too much work to restart
- **Simulated annealing**
 - Too much time spent on high-cost plans
- **Two-phase**
 - Phase I uses iterative improvement to get to the cup bottom quickly
 - Phase II uses simulated annealing to explore the cup bottom further