Distributed Databases

CPS 216
Advanced Database Systems

Review

Top-down approach to distributed DBMS
• Data partitioning techniques
 – Horizontal partitioning
 • Round-robin, hash, range, predicate-based
 • Derived horizontal partitioning
 – Vertical partitioning
• Query processing and optimization techniques
• Concurrency control and recovery

Derived horizontal partitioning (slide 1)

Example
• Relations
 – Student(SID, name, dept, …)
 – Department(dept, name, school, …)
• Common query: Student ∪ Department
• Department is partitioned according to school
 – school = 'Art & Science' Department
 – school = 'Engineering' Department
 – …
• How do we partition Student?
 –
Derived horizontal partitioning (slide 2)

• If R (owner relation, e.g., Department) is partitioned into:
 R_1, R_2, \ldots, R_n
• Then S (member relation, e.g., Student) should be partitioned into S into:
 $S \bowtie R_1, S \bowtie R_2, \ldots, S \bowtie R_n$
• Recall the definition of semijoin:
 $S \bowtie R_i = p_{\text{attrs}(S)}(S \bowtie R_i)$

Derived horizontal partitioning (slide 3)

• Completeness and reconstructability
 – $S = (S \bowtie R_1) \bowtie (S \bowtie R_2) \bowtie \ldots \bowtie (S \bowtie R_n)$
 – Every S tuple must join with some R tuple
• Disjointness
 – $(S \bowtie R_i) \bowtie (S \bowtie R_j) = \emptyset$ for any $i \neq j$
 – Every S tuple can only join with one R tuple
 – Note: not a precise requirement
 » $S \bowtie R$ is a foreign key join (S references R)
 – Example: Student.dept references Department.dept

Vertical partitioning

$R \bowtie \{ p_{\text{attrs}(R_1)}(R_1), p_{\text{attrs}(R_2)}(R_2), \ldots, p_{\text{attrs}(R_n)}(R_n) \}$

 $\text{attrs}(R) = \text{attrs}(R_1) \bowtie \text{attrs}(R_2) \bowtie \ldots \bowtie \text{attrs}(R_n)$
 $\text{attrs}(R_i) \bowtie \text{attrs}(R_j) = \text{key}(R)$ for any $i \neq j$

• Completeness and reconstruction
 – $R = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$
• Disjointness
 – $\text{attrs}(R_i) \bowtie \text{attrs}(R_j) = \text{key}(R)$ for any $i \neq j$
 » Just like
Attribute affinity matrix

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>45</td>
<td>0</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>A₂</td>
<td>0</td>
<td>80</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>A₃</td>
<td>45</td>
<td>5</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>A₄</td>
<td>0</td>
<td>75</td>
<td>3</td>
<td>78</td>
</tr>
</tbody>
</table>

- A_{ij}: a measure of how “often” A_i and A_j are accessed by the same query

Partitioning according to AAM

- Cluster attributes based on affinity

<table>
<thead>
<tr>
<th></th>
<th>A₁</th>
<th>A₂</th>
<th>A₃</th>
<th>A₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A₂</td>
<td>45</td>
<td>53</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>A₃</td>
<td>0</td>
<td>5</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>A₄</td>
<td>0</td>
<td>3</td>
<td>75</td>
<td>78</td>
</tr>
</tbody>
</table>

Query rewrite for partitions

- Start with a query plan
- Replace relations by partitions/fragments
- Push ? and ?? up, s and p down
- Simplify and eliminate unnecessary operations
Query rewrite example:
Primary horizontal partitioning

Another query rewrite example:
Primary horizontal partitioning

Query rewrite example:
Derived horizontal partitioning
Query rewrite example:
Vertical partitioning

Execution partitioning
- Data partitioned at different sites
- Result wanted at possibly another site
- Where do query operators execute?
 - Approach 1: operators remain local to sites; add send/receive operators to ship intermediate results between sites
 - Inter-operator parallelism
 - Approach 2: redesign operators to exploit intra-operator parallelism

Send/receive operators
Parallel/distributed query operators

- Sort
 - Parallel range-partitioning sort
 - Parallel merge sort
- Join
 - Partitioning join
 - Asymmetric fragment and replicate join
 - General fragment and replicate join
 - Semijoin reducers

Range-partitioning sort

- Range partition R on the sort key A, and then sort each partition locally at destination sites

Merge sort

- Sort R locally at source sites, range partition the sorted results and merge them at destination sites
Selecting a partitioning vector

Possible centralized approach using a coordinator

• Each site sends statistics about its partition to coordinator
 – Could be (low, high, number of tuples), or even a histogram
• Coordinator computes and distributes partitioning vector
 – Could be a vector that equally partitions the relation
• Multiple rounds of refinement possible

Partitioning join

• Partition both R and S according to join key, and then join corresponding partitions locally

More on partitioning join

• Same partition function for both R and S
 – Can be either range or hash partitioning
• Equijoins work best
• Any type of local join algorithm can be used
• Several possible variants, e.g.
 – Partition R; partition S; join
 – Partition R and build a hash table for R; partition S and join
Asymmetric fragment & replicate join

- Partition R, replicate S, and then join each partition of R with a replica of S locally

![Diagram showing the asymmetric fragment & replicate join process]

General fragment & replicate join

- Suppose $m \neq n$ sites participate in join
- Partition R into R_1, R_2, \ldots, R_m
- Partition S into S_1, S_2, \ldots, S_n
- Each site receives a copy of R_i and a copy of S_j and joins them locally
 - Each R_i needs to be replicated n times
 - Each S_j needs to be replicated m times

Semijoin reducer

$R(A, B) \bowtie S(A, C)$

- Naive strategy: ship R Site 2 and join it there with S
- Problem
 - All R tuples are shipped, but few actually join
 - Lots of bandwidth wasted in sending useless R tuples!
- Idea
 - $R \bowtie S = (R \bowtie ? S) \bowtie S = R \bowtie (S \bowtie ? R)$
 - Use semijoins to reduce the number of tuples that need to be shipped to join at another site
Semijoin reducer in action

\[R(A, B) \bowtie S(A, C) \]

Site 1 Site 2

- Site 2 computes \(p_A S \) and sends it to Site 1
- Site 1 computes \(R \bowtie S = R \bowtie p_A S \) and sends it to Site 2
- Site 2 computes \(R \bowtie S = (R \bowtie S) \bowtie S \)

- Communication costs
 - Naïve: \(\text{sizeof}(R) \)
 - Semijoin: \(\text{sizeof}(p_A S) + \text{sizeof}(R \bowtie S) \)
 - Greater savings if there is a local selection on \(S \)

Semijoin reducer tricks

- Encode \(p_A S \) as a bitmap
 - One bit for each possible value in the domain of \(A \)
 - What if the domain is too big? What if we only want to send \(n \) bits?
- Encode \(p_A S \) as a bloom-filter of \(n \) bits
 - Hash each \(S \cdot A \) value to an offset from 0 to \(n - 1 \)
 - Bloom-filer is lossy and may generate false positives
 - Example: \(a \bowtie p_A S, b \bowtie p_A S, \text{hash}(a) = \text{hash}(b) = 1 \); \(R \) tuples with value \(b \) are sent to \(S \)—unnecessary but harmless
 - Similar to the idea of signature files

Full reducer

\[R_1 \bowtie \ldots \bowtie R_n \]

- \(R_i \) is reduced if \(R_i = p_{\text{attrs}}(R_1 \bowtie \ldots \bowtie R_n) \)
- A series of semijoins is called a full reducer if every \(R_i \) is reduced after executing the semijoins
 - That is, there are no dangling tuple at all!
- Full reducer for \(R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
 - \(S \bowtie ? \bowtie ? \bowtie R \)
 - \(T \bowtie ? \bowtie ? \bowtie S \)
 - \(S \bowtie ? \bowtie ? \bowtie R \bowtie ? \bowtie S \)
- Full reducer for \(R(A, B) \bowtie S(B, C) \bowtie T(C, A) \)
 - None!
Join hypergraph

- A node is an attribute; matching join attributes share the same node
- A hyperedge connects attributes from the same relation
- For hyperedges E and F, if the attributes in $E - F$ are unique to E (not in any other hyperedge), then E is an ear
- A join hypergraph is acyclic if we can continue removing ears until there is nothing left
 - That is, the graph is really a tree (think of ears as leaves)

Full reducer for acyclic hypergraph

- Theorem: A join has a full reducer iff the join hypergraph is acyclic
- Algorithm
 - Remove an ear R; say it hangs off S
 - $S \not\rightarrow R \Leftrightarrow S$ is reduced w.r.t. R
 - Generate a full reducer for the remaining hypergraph
 - $R \not\rightarrow S \Leftrightarrow$ Other relations are reduced w.r.t. R through S
 - S is further reduced w.r.t. other relations through S

Next time

- Optimizing distributed queries
- Concurrency control and recovery
- Bottom-up approach to building a distributed database
- Data warehousing