Distributed Databases

CPS 216
Advanced Database Systems

Review
Top-down approach to distributed DBMS
• Data partitioning techniques
 – Horizontal partitioning
 • Round-robin, hash, range, predicate-based
 • Derived horizontal partitioning
 – Vertical partitioning
• Query processing and optimization techniques
• Concurrency control and recovery

Derived horizontal partitioning (slide 1)

Example
• Relations
 – Student(SID, name, dept, …)
 – Department(dept, name, school, …)
• Common query: Student ⊸ Department
• Department is partitioned according to school
 – S school = 'Art & Science' Department
 – S school = 'Engineering' Department
 – …
• How do we partition Student?
 – Same partitioning scheme as Department

Derived horizontal partitioning (slide 2)

• If R (owner relation, e.g., Department) is partitioned into:
 \(R_1, R_2, \ldots, R_n \)
• Then S (member relation, e.g., Student) should be partitioned into S into:
 \(S \gg R_1, S \gg R_2, \ldots, S \gg R_n \)
• Recall the definition of semijoin:
 \(S \gg R_i = p_{\text{attr}(S)}(S \gg R_i) \)

Derived horizontal partitioning (slide 3)

• Completeness and reconstructability
 – \(S = (S \gg R_1) \cup (S \gg R_2) \cup \ldots \cup (S \gg R_n)? \)
 – Every S tuple must join with some R tuple
• Disjointness
 – \((S \gg R_i) \cap (S \gg R_j) = \emptyset \) for any \(i \neq j \).
 – Every S tuple can only join with one R tuple
 – Note: not a precise requirement
• S \gg R is a foreign key join (S references R)
 – Example: Student.dept references Department.dept

Vertical partitioning

\[R \uparrow \{ p_{\text{attr}(R_1)}^R, p_{\text{attr}(R_2)}^R, \ldots, p_{\text{attr}(R_n)}^R \} \]
\[\text{attr}(R) = \text{attr}(R_1) \cup \text{attr}(R_2) \cup \ldots \cup \text{attr}(R_n) \]
\[\text{attr}(R_i) \cap \text{attr}(R_j) = \text{key}(R) \text{ for any } i \neq j \]
• Completeness and reconstruction
 – \(R = R_1 \gg R_2 \gg \ldots \gg R_n \)
• Disjointness
 – \(\text{attr}(R_1) \cap \text{attr}(R_2) = \text{key}(R) \text{ for any } i \neq j \)
 – Just like lossless-join decomposition and DSM
Attribute affinity matrix

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>45</td>
<td>0</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>A_2</td>
<td>0</td>
<td>80</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>A_3</td>
<td>45</td>
<td>5</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>A_4</td>
<td>0</td>
<td>75</td>
<td>3</td>
<td>78</td>
</tr>
</tbody>
</table>

* A_{ij}: a measure of how “often” A_i and A_j are accessed by the same query

Partitioning according to AAM

* Cluster attributes based on affinity

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_1</th>
<th>A_2</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>45</td>
<td>45</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A_3</td>
<td>45</td>
<td>53</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>A_2</td>
<td>0</td>
<td>5</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>A_4</td>
<td>0</td>
<td>3</td>
<td>75</td>
<td>78</td>
</tr>
</tbody>
</table>

Query rewrite for partitions

* Start with a query plan
* Replace relations by partitions/fragments
* Push ∪ and ⋈ up, s and p down
* Simplify and eliminate unnecessary operations

Query rewrite example:
Primary horizontal partitioning

Assuming S.A references R.A

Another query rewrite example:
Primary horizontal partitioning

Derived horizontal partitioning
Query rewrite example:
Vertical partitioning

Execution partitioning
• Data partitioned at different sites
• Result wanted at possibly another site
• Where do query operators execute?
 – Approach 1: operators remain local to sites; add send/receive operators to ship intermediate results between sites
 • Inter-operator parallelism
 – Approach 2: redesign operators to exploit intra-operator parallelism

Send/receive operators

Parallel/distributed query operators
• Sort
 – Parallel range-partitioning sort
 – Parallel merge sort
• Join
 – Partitioning join
 – Asymmetric fragment and replicate join
 – General fragment and replicate join
 – Semijoin reducers

Range-partitioning sort
• Range partition R on the sort key A, and then sort each partition locally at destination sites

Merge sort
• Sort R locally at source sites, range partition the sorted results and merge them at destination sites
Selecting a partitioning vector
Possible centralized approach using a coordinator
• Each site sends statistics about its partition to coordinator
 – Could be (low, high, number of tuples), or even a histogram
• Coordinator computes and distributes partitioning vector
 – Could be a vector that equally partitions the relation
• Multiple rounds of refinement possible

More on partitioning join
• Same partition function for both R and S
 – Can be either range or hash partitioning
• Equijoins work best
• Any type of local join algorithm can be used
• Several possible variants, e.g.
 – Partition R; partition S; join
 – Partition R and build a hash table for R; partition S

Asymmetric fragment & replicate join
• Partition R, replicate S, and then join each partition of R with a replica of S locally

General fragment & replicate join
• Suppose \(m \times n \) sites participate in join
• Partition R into \(R_1, R_2, \ldots, R_m \)
• Partition S into \(S_1, S_2, \ldots, S_n \)
• Each site receives a copy of \(R_i \) and a copy of \(S_j \) and joins them locally
 – Each \(R_i \) needs to be replicated \(n \) times
 – Each \(S_j \) needs to be replicated \(m \) times

Semijoin reducer
\(R(A, B) \bowtie S(A, C) \)
Site 1 Site 2
• Naïve strategy: ship R Site 2 and join it there with S
• Problem
 – All \(R \) tuples are shipped, but few actually join
 – Lots of bandwidth wasted in sending useless \(R \) tuples!
• Idea
 – \(R \bowtie S = (R \bowtie S) \bowtie (S \bowtie R) \)
 – Use semijoins to reduce the number of tuples that need to be shipped to join at another site
Semijoin reducer in action

\[R(A, B) \bowtie S(A, C) \]

Site 1 → Site 2
- Site 2 computes \(p \bowtie S \) and sends it to Site 1
- Site 1 computes \(R \bowtie S = R \bowtie p \bowtie S \) and sends it to Site 2
- Site 2 computes \(R \bowtie S = (R \bowtie \beta) \bowtie S \)
- Communication costs
 - Naive: \(\text{sizeof}(R) \)
 - Semijoin: \(\text{sizeof}(p \bowtie S) + \text{sizeof}(R \bowtie S) \)
 - Greater savings if there is a local selection on \(S \)

Full reducer

\[R_1 \bowtie \ldots \bowtie R_n \]
- \(R_i \) is reduced if \(R_i = p \bowtie S(R_1 \bowtie \ldots \bowtie R_n) \)
- A series of semijoins is called a full reducer if every \(R_i \) is reduced after executing the semijoins
 - That is, there are no dangling tuple at all!
- Full reducer for \(R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
 - \(T \bowtie T \bowtie S \)
 - \(S \bowtie S \bowtie T \)
 - \(R \bowtie R \bowtie S \)
- Full reducer for \(R(A, B) \bowtie S(B, C) \bowtie T(C, A) \)
 - None!

Join hypergraph

\[R(A, B) \bowtie S(B, C) \bowtie T(C, D) \]
- A node is an attribute; matching join attributes share the same node
- A hyperedge connects attributes from the same relation
- For hyperedges \(E \) and \(F \), if the attributes in \(E \bowtie F \) are unique to \(E \) (not in any other hyperedge), then \(E \) is an ear
- A join hypergraph is acyclic if we can continue removing ears until there is nothing left
 - That is, the graph is really a tree (think of ears as leaves)

Semijoin reducer tricks

- Encode \(p \bowtie S \) as a bitmap
 - One bit for each possible value in the domain of \(A \)
 - What if the domain is too big? What if we only want to send \(n \) bits?
- Encode \(p \bowtie S \) as a bloom-filter of \(n \) bits
 - Hash each \(S.A \) value to an offset from 0 to \(n - 1 \)
 - Bloom-filter is lossy and may generate false positives
 - Example: \(a \bowtie p \bowtie S, b \notin p \bowtie S, \bowtie \text{hash}(a) = \bowtie \text{hash}(b) = 1; R \)
 - tuples with value \(b \) are sent to \(S \) — unnecessary but harmless
 - Similar to the idea of signature files

Full reducer for acyclic hypergraph

- Theorem: A join has a full reducer iff the join hypergraph is acyclic
- Algorithm
 - Remove an ear \(R \); say it hangs off \(S \)
 - \(S \bowtie R \leftarrow S \) is reduced w.r.t. \(R \)
 - Generate a full reducer for the remaining hypergraph
 - \(R \bowtie S \) \(\bowtie S \)
 - Other relations are reduced w.r.t. \(R \) through \(S \)
 - \(S \) is further reduced w.r.t. other relations

Next time

- Optimizing distributed queries
- Concurrency control and recovery
- Bottom-up approach to building a distributed database
- Data warehousing