On-chip Parallelism

Alvin R. Lebeck
CPS 220

Administivia

- Homework #5 Due Today
- Homework #6 Due Dec 6

Projects
- Presentations Dec 6 (or Dec 4 & Dec 6)
- Documents ~10 pages
 - Good writing is important
 - Progress is important
- Final is Dec 14

Multithreaded Processors

- Exploit thread-level parallelism to improve performance
 - Multiple Program Counters
- Thread
 - Independent programs (multiprogramming)
 - Threads from same program

Deneclor HEP

- General purpose scientific computer
- Organized as MP
 - Up to 16 processors
 - Each processor multithreaded
 - Up to 128 memory modules
 - Up to 4 I/O cache modules
 - Three-input switches and chaotic routing

HEP Processor Organization

- Multiple contexts (threads)
 - Each has own Program Status Word (PSW)
- PSWs circulate in control loop
 - Control and data loops pipelined 8 deep
 - PSW in control can circulate no faster than data in data loop
 - PSW at queue head fetches and starts execution of next instruction
- Clock period: 100ns
 - 8 PSWs in control loop ⇒ 10MIPS
 - Each thread gets 1/8 the processor
 - Maximum performance per thread ⇒ 1.25 MIPS
 - (And they tried to sell as supercomputer)

Simultaneous Multithreading

- Goal: use hardware resources more efficiently
 - Especially for superscalar processors
- Assume 4-issue superscalar
- Alpha 21464

Thread Instruction

Horizontal Waste

Vertical Waste
Operation of Simultaneous Multithreading

- Standard multithreading can reduce vertical waste
- Issue from multiple threads in same clock cycle
- Eliminate both horizontal and vertical waste
- Larger Register Files

<table>
<thead>
<tr>
<th>Thread Instructions</th>
<th>Thread Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Multithreading</td>
<td>Simultaneous Multithreading</td>
</tr>
</tbody>
</table>

Limitations of SuperScalar Architectures

Instruction Fetch
- Branch prediction
- Alignment of packet of instructions

Dynamic Instruction Issue
- Need to identify ready instructions
- Rename Table
 - No compares
 - Large number of ports (Operands x Width)
- Issue Queue Size
 - \(n \times O \times W \) 1 bit comparators (src and dest)
 - Quadratic increase in queue size with issue width
 - PA-8000 20% of die area to issue queue (56 instruction window)

SuperScalar Limitations (Continued)

Instruction Execute
- Register File
 - More rename registers
 - More access ports
 - Complexity quadratic with issue width
- Bypass logic
 - Complexity quadratic with issue width
 - Wire delays
- Functional Units
 - Replicate
 - Add ports to data cache (complexity adds to access time)

Why Single Chip MP?

- Technology Push
 - Benefits of wide issue are limited
 - Decentralized microarchitecture: easier to build several simple fast processors than one complex processor
- Application Pull
 - Applications exhibit parallelism at different grains
 - < 10 instructions per cycle (Integer codes)
 - > 40 instructions per cycle (FP loops)

A 6-Way SuperScalar Processor

A 4 x 2 Single Chip Multiprocessor
Performance Comparison

Summary of Performance

- 4 x 2 MP works well for coarse grain apps
 - How well would Message Passing Architecture do?
 - Can SUIF handle pointer intensive codes?
- For “tough” codes 6-way does slightly better, but neither is > 60% better than 2-issue