Interconnection Networks

Alvin R. Lebeck
CPS 220

Admin

• Homework #5 Due November 20
• Work on your projects…do a good job
Interconnection Networks

- **Goal:** Communication between computers
- **Warning:** Terminology-rich environment
- **Focus on Networks for Parallel Computing**
 - today’s System Area Networks exhibit many of the same properties

Terms

Network characterized by

- **Topology**
 - physical structure of the graph
- **Routing Algorithm**
 - which paths through network can message flow
- **Switching Strategy**
 - How data in message traverses its route
 - Circuit Switched vs Packet Switched
- **Flow Control**
 - When does a packet (or portions of it) move along its route
Organization

• Given topology constructed by linking switches and network interfaces, must deliver packet from node A to node B
• Link: cable with connectors on each end
 – connect switches to other switches or network interfaces
• Switch: N inputs N outputs (degree N)
• Phit: Minimum # of bits physically moved across link in one cycle (Can pipeline on single wire)
• Flit: Minimum # of bits move across link as a single unit
• Packet: unit that requires routing information, some number of flits

Topology

• Structure of the interconnect
• Determines
 – Switch Degree: number of links from a node
 – Diameter: number of links crossed between nodes on maximum shortest path
 – Average distance: number of hops to random destination
 – Bisection: minimum number of links that separate the network into two halves
Important Topologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Degree</th>
<th>Diameter</th>
<th>Ave Dist</th>
<th>Bisection</th>
<th>Diam</th>
<th>Ave D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D mesh</td>
<td>N-1</td>
<td>2N/3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D mesh</td>
<td>4</td>
<td>2(N^{1/2} - 1)</td>
<td>2N^{1/2} / 3</td>
<td>N^{1/2}</td>
<td>63</td>
<td>21</td>
</tr>
<tr>
<td>3D mesh</td>
<td>6</td>
<td>3(N^{1/3} - 1)</td>
<td>3N^{1/3} / 3</td>
<td>N^{2/3}</td>
<td>~30</td>
<td>~10</td>
</tr>
<tr>
<td>nD mesh (N = k^n)</td>
<td>2n</td>
<td>n(N^{1/n} - 1)</td>
<td>nN^{1/n} / 3</td>
<td>N^{(n-1)/n}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring</td>
<td>N / 2</td>
<td>N/4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D torus</td>
<td>N^{1/2}</td>
<td>N^{1/2} / 2</td>
<td>2N^{1/2}</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>k-ary n-cube (N = k^n)</td>
<td>n(N^{1/n})</td>
<td>nk/2</td>
<td>nN^{1/n2}</td>
<td>2k^{n-1}</td>
<td>15</td>
<td>8 (3D)</td>
</tr>
<tr>
<td>Hypercube</td>
<td>n</td>
<td>n = LogN</td>
<td>n/2</td>
<td>n/2</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Topologies (cont)

<table>
<thead>
<tr>
<th>Type</th>
<th>Degree</th>
<th>Diameter</th>
<th>Ave Dist</th>
<th>Bisection</th>
<th>Diam</th>
<th>Ave D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Tree</td>
<td>3</td>
<td>2Log₂ N</td>
<td>~2Log₂ N</td>
<td>1</td>
<td>20</td>
<td>~20</td>
</tr>
<tr>
<td>4D Tree</td>
<td>5</td>
<td>2Log₄ N</td>
<td>2Log₄ N - 2/3</td>
<td>1</td>
<td>10</td>
<td>9.33</td>
</tr>
<tr>
<td>kD</td>
<td>k+1</td>
<td>Log₂ N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D fat tree</td>
<td>4</td>
<td>Log₂ N</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D butterfly</td>
<td>4</td>
<td>Log₂ N</td>
<td>Log₂ N</td>
<td>N/2</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

© Alvin R. Lebeck 1999
Butterfly

Multistage: nodes at ends, switches in middle

- All paths equal length
- Unique path from any input to any output
- Conflicts cause tree saturation

Benes Network

- Routes all permutations w/o conflict
- Notice similarity to Fat Tree (Fold in half)
- Randomization is major breakthrough

ABCs of Networks

- **Starting Point**: Send bits between 2 computers

Queue on each end

- Can send both ways ("Bi-directional, Full Duplex")
- Rules for communication? "protocol"
 - Synchronous send
 - Need Request & Response signaling
 - Name for standard group of bits sent: **Packet**
A Simple Example

- **What is the packet format?**
 - Fixed? (for HW Interpretation)
 - Number bytes?

<table>
<thead>
<tr>
<th>Request/Response</th>
<th>Address/Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 bit 32 bits

0: Please send data from Address
1: Packet contains data corresponding to request

Questions About Simple Example

- **What if more than 2 computers want to communicate?**
 - Need node identifier field (destination) in packet
 - Routing and topology

- **What if packet is garbled in transit?**
 - Add error detection field in packet (e.g., CRC)

- **What if packet is lost?**
 - More elaborate protocols to detect loss (e.g., NAK, time outs)

- **What if multiple processes/machine?**
 - Dispatch
 - Queue per process

- **Questions such as these lead to more complex protocols and packet formats**
General Packet Format

- **Header**
 - routing and control information
- **Payload**
 - carries data (non HW specific information)
 - can be further divided (framing, protocol stacks...)
- **Error Code**
 - generally at tail of packet so it can be generated on the way out

Message v.s. Packet

- A Message may be composed of several packets
- Applications reason about messages
- Network transfers packets
- Small fixed size packets. Problems?
 - Fragmentation and reassembly (SW overhead)
- Variable Size packets. Problems?
 - Congestion
Packet Switched v.s. Circuit Switched

Circuit Switched
• Establish Route then Send Data
• Telephone system

Packet Switched
• Route each packet individually
• Delivery Guarantees
 – Reliable
 – In order, what if not?

Routing
• Store-and-forward
• Cut-through
• Virtual cut-through
• Wormhole
• **Store-and-forward** policy: each switch waits for the full packet to arrive in the switch before it is sent on to the next switch.

• **Cut-through** routing: switch examines the header, decides where to send the message, and then starts forwarding it immediately.
Virtual Cut-Through

- What to do if output port is blocked?
- Lets the tail continue when the head is blocked, absorbing the whole message into a single switch.
 - Requires a buffer large enough to hold the largest packet.
- Degenerates to store-and-forward with high contention
- Compaq EV7 network

Wormhole

- When the head of the message is blocked the message stays strung out over the network
 - Potentially blocks other messages (needs only buffer the piece of the packet that is sent between switches).
 - CM-5 used it, with each switch buffer being 4 bits per port.
 - Myrinet uses it
- Interaction with Packet Size
- Can cause tree saturation...
Store and Forward vs. Cut-Through

- **Advantage**
 - Latency reduces from function of:
 - **Store and Forward**
 number of intermediate switches times the size of the packet to
 - **Cut-Through**
 time for 1st part of the packet to negotiate the switches + the packet size + interconnect BW

Switches

- **At minimum, must route inputs to outputs**

VLSI makes it easier to create larger **fully connected** switches
Routing Algorithm

- How do I know where a packet should go?
- Arithmetic
- Source-Based
- Table Lookup
- Adaptive—route based on network state (e.g., contention)

Arithmetic Routing

- For regular topology, simple arithmetic to determine route
- 2D Mesh (Also called NEWS network)
 - packet header contains signed offset to destination
 - switch ++ or -- one field of header (x or y dimension)
 - when x == 0 and y == 0, then at correct processor
- Requires ALU in switch
- Must recompute CRC
Source Based and Table Lookup Routing

Source Based
- Source specifies output port for each switch in route
- Very Simple Switches
 - no control state
 - strip output port off header
- Myrinet uses this

Table Lookup
- Very Small Header, index into table for output port
- Big tables, must be kept up to date...

Deterministic v.s. Adaptive Routing

- Deterministic—follows a pre-specified route
 - mesh: dimension-order routing
 » (x1, y1) -> (x2, y2)
 » first Dx = x2 - x1,
 » then Dy = y2 - y1,
 - hypercube: edge-cube routing
 » X = x0x1x2 . . .xn -> Y = y0y1y2 . . .yn
 » R = X xor Y
 » Traverse dimensions of differing address in order
 - tree: common ancestor
- Adaptive—route determined by contention for output port
Deadlock

Deadlock Free Routing

- Virtual Channels
 - Not virtual cut-through
 - Add buffers so, flits of wormhole packets can be interleaved
- Up*-Down*
 - Number switches: higher = farther away from processors
 - route up, make one turn, route down
- Turn Model Routing
 - Restrict order of turns
 » West First
 » North Last
 » Negative First
 - Can increase number of hops
Congestion Control

- Packet switched networks do not reserve bandwidth; this leads to *contention*
- Solution: prevent packets from entering until contention is reduced (e.g., metering lights)
- Options:
 - End-to-end Flow Control
 - Link-level Flow Control

Link-Level Flow Control

- **Packet discarding**: If a packet arrives at a switch and there is no room in the buffer, the packet is discarded
 - no communication between switches, requires higher level protocol
- **Flow control**: between pairs of receivers and senders; use feedback to tell the sender when it is allowed to send the next packet
 - **Choke packets**: aka “rate-based”; Each packet received by busy switch in warning state sent back to the source via choke packet. Source reduces traffic to that destination by a fixed % (ATM Forum)
 - Back-pressure: separate wires to tell to stop
 - high water, low water (stop & go back to source switch) (Myrinet)
 - **Window**: give the original sender the right to send N packets before getting permission to send more (overlap the latency of the interconnection with the overhead to send and receive a packet)
Link-Level Flow Control

- Transfer single flit when receiver is ready
- Could have long links with many flits in flight

Credit-based (Window) Flow Control

- Receiver gives N credits to sender
 - sender decrements count
 - stops sending if zero
 - receiver sends back credit as it drains its buffer
 - bundle credits to reduce overhead
- Must account for link latency
Water Level

- high water, low water
- stop & go back to source switch (Myrinet)
- can send redundant stop/go

Case Study Cray T3D

- 1024 switch nodes each connected to 2 processors
- 3D Torus, bidirectional, 300 MB/s
- Link: 16 bits, 8 control bits
- Variable size packet (multiple of 16 bits)
- Logical request & response networks
 - 2 virtual channels each for deadlock
- Stacked dimension routing
- Wormhole for large packets, virtual cut-through for small packets
IBM SP-2 (Vulcan)

- Switch has eight bidirectional 40 MB/s links
- Link: 8 data bits, 1 tag, 1 reverse flow-control
- Flit is 16 bits, phit is 8
- input FIFO + output FIFO + central buffer 128 8-byte segments