Lecture 8: More ILP stuff

Professor Alvin R. Lebeck
Computer Science 220
Fall 2001

Admin

- Thursday office hours to Wednesday 10am
- Homework #2 Due Today
 - Submit simulator code, fareed will post instructions
- Homework #3 assigned
- Please email me your projects, need my approval...
- Project Proposal (October 2)
 - Short document
 - Short presentation
- Papers to read on web page

Summary

- Branch Prediction
 - Branch History Table: 2 bits for loop accuracy
 - Correlation: Recently executed branches correlated with next branch
 - Branch Target Buffer: include branch address & prediction
- Superscalar and VLIW
 - CPI < 1
 - Dynamic issue vs. Static issue
 - More instructions issue at same time, larger the penalty of hazards
- SW Pipelining
 - Symbolic Loop Unrolling to get most from pipeline with little code expansion, little overhead
- What about non-loop codes?
 - How do you get > 1 instruction

Trace Scheduling

- Parallelism across IF branches vs. LOOP branches
- Two steps:
 - Trace Selection
 - Find likely sequence of basic blocks (trace) of (statically predicted) long sequence of straight-line code
 - Trace Compaction
 - Squeeze trace into few VLIW instructions
 - Need bookkeeping code in case prediction is wrong

HW support for More ILP

- Avoid branch prediction by turning branches into conditionally executed instructions:
 if (x) then A = B op C else NOP
 - If false, then neither store result nor cause exception
 - Expanded ISA of Alpha, MIPS, PowerPC, SPARC have conditional move; PA-RISC can annul any following instr, IA-64 predicated execution.
- Drawbacks to conditional instructions
 - Still takes a clock even if “annulled”
 - Stall if condition evaluated late
 - Complex conditions reduce effectiveness; condition becomes known late in pipeline
HW support for More ILP

- **Speculation**: allow an instruction to issue that is dependent on branch predicted to be taken without any consequences (including exceptions) if branch is not actually taken ("HW undo" squash)
- Often try to combine with dynamic scheduling
- Tomasulo: separate speculative bypassing of results from real bypassing of results
 - When instruction no longer speculative, write results (instruction commit)
 - execute out-of-order but commit in order

Speculation

- 4-way issue
- All of B2 issued speculatively
- Must be squashed
- Could have execute B1 in speculative mode

Four Steps of Speculative Tomasulo Algorithm

1. **Issue**—get instruction from FP Op Queue
 - If reservation station and reorder buffer slot free, issue instr & send operands & reorder buffer no. for destination.
2. **Execution**—operate on operands (EX)
 - When both operands ready then execute; if not ready, watch CDB for result; when both in reservation station, execute
3. **Write result**—finish execution (WB)
 - Write on Common Data Bus to all awaiting FUs & reorder buffer; mark reservation station available.
4. **Commit**—update register with reorder result
 - When instr. at head of reorder buffer & result present, update register with result (or store to memory) and remove instr from reorder buffer.

Limit to ILP

- Conflicting studies of amount of parallelism available in late 1980s and early 1990s. Different assumptions about:
 - Benchmarks: vectorized Fortran FP vs. integer C programs
 - Hardware sophistication
 - Compiler sophistication

Initial HW Model here; MIPS compilers

1. **Register renaming**—infinite virtual registers and all WAW & WAR hazards are avoided
2. **Branch prediction**—perfect; no mispredictions
3. **Jump prediction**—all jumps perfectly predicted ⇒ machine with perfect speculation & an unbounded buffer of instructions available
4. **Memory-address disambiguation**—addresses are known & a store can be moved before a load provided addresses not equal
 - 1 cycle latency for all instructions

Figure 4.34, page 311

Reorder Buffer
 FP Regs
 Res Stations
 FP Adder

Res Stations
 FP Adder
 FP Regs
 FP Op Queue
 Reorder Buffer

B1
 ADD R1, R3
 LD R2
 SUB ST

B2
 ADD R1, R3
 LD R2
 SUB ST

B3
 ADD R2, R1
 LD SUB ST

Correct Path

Predicted Path

Infinite virtual registers and all WAW & WAR hazards are avoided.

When both operands ready then execute; if not ready, watch CDB for result; when both in reservation station, execute.

Write on Common Data Bus to all awaiting FUs & reorder buffer; mark reservation station available.

When instr. at head of reorder buffer & result present, update register with result (or store to memory) and remove instr from reorder buffer.

© Alvin R. Lebeck 2001
CPS 220
Page 2
Upper Limit to ILP
(Figure 4.38, page 319)

<table>
<thead>
<tr>
<th>Program</th>
<th>gcc</th>
<th>espresso</th>
<th>li</th>
<th>fpppp</th>
<th>doduc</th>
<th>tomcatv</th>
<th>ILP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>54.8</td>
<td>62.6</td>
<td>17.8</td>
<td>75.2</td>
<td>118.7</td>
<td>150.1</td>
<td></td>
</tr>
</tbody>
</table>

More Realistic HW: Branch Impact
(Figure 4.40, Page 323)

Change from Infinite window to examine to 2000 and maximum issue of 64 instructions per clock cycle

Selective Branch Predictor

- 8096 x 2 bits
- Taken/Not Taken
- Branch Addr
- Global/History
- 2048 x 4 x 2 bits
- Choose Non-correlator
- Choose Correlator
- 8K x 2 bit Selector
- 11
- 10
- 01
- 00

More Realistic HW: Register Impact
(Figure 4.44, Page 328)

Change 2000 instr window, 64 instr issue, 8K 2 level Prediction

More Realistic HW: Alias Impact
(Figure 4.46, Page 330)

Change 2000 instr window, 64 instr issue, 8K 2 level Prediction, 256 renaming registers

Realistic HW for '9X: Window Impact
(Figure 4.48, Page 332)

Perfect disambiguation (HW), 1K Selective Prediction, 16 entry return, 64 registers, issue as many as window

Profile

Infinite 256 128 64 32 None

Perfect Global/Stack perf; Inspec. heap conflicts None

More Realistic HW: Branch Impact
(Figure 4.42, Page 324)

Profile

Infinite 256 128 64 32 None

Perfect

Profile

Infinite 256 128 64 32 None

Perfect

Profile

Infinite 256 128 64 32 None

Perfect
Braniac vs. Speed Demon (Spec Ratio)

- 8-scalar IBM Power-2 @ 71.5 MHz (5 stage pipe)
 vs. 2-scalar Alpha 21064 @ 200 MHz (7 stages)

Discussion

- Technical discussion
- Style of presentation
- Relate topics to what we already know
- Next Time: Energy/Power
- Next Tuesday: Project proposal presentations