Relational Database Design Theory
Part II

CPS 116
Introduction to Database Systems

Announcements (October 13)

- Midterm graded; sample solution available
 - Please verify your grades on Blackboard
- Project milestone #1 due today

Review

- Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - A generalization of the key concept
- Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \rightarrow Y$ where X is not a superkey
 - Called a BCNF violation
- BCNF decomposition: a method for removing redundancies
 - Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
 - A lossless join decomposition
- Schema in BCNF has no redundancy due to FD’s
Next

- 3NF (BCNF is too much)
- Multivalued dependencies: another source of redundancy
- 4NF (BCNF is not enough)

Motivation for 3NF

- Address (street_address, city, state, zip)
 - street_address, city, state → zip
 - zip → city, state
- Keys
 - {street_address, city, state}
 - {street_address, zip}
- BCNF?

To decompose or not to decompose

- Address₁ (zip, city, state)
- Address₂ (street_address, zip)
- FD’s in Address₁
 - zip → city, state
- FD’s in Address₂
 - None!
- Hey, where is street_address, city, state → zip?
 - Cannot check without joining Address₁ and Address₂ back together
- Problem: Some lossless join decomposition is not dependency-preserving
- Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?
3NF

- \(R \) is in Third Normal Form (3NF) if for every non-trivial FD \(X \rightarrow A \) (where \(A \) is single attribute), either
 - \(X \) is a superkey of \(R \), or
 - \(A \) is a member of at least one key of \(R \)

Intuitively, BCNF decomposition on \(X \rightarrow A \) would "break" the key containing \(A \)

- So \textit{Address} is already in 3NF

- Tradeoff:
 - Can enforce all original FD's on individual decomposed relations
 - Might have some redundancy due to FD's

BNCF = no redundancy?

- \textit{Student} (\textit{SID}, \textit{CID}, \textit{club})
 - Suppose your classes have nothing to do with the clubs you join
 - FD's?
 - BNCF?
 - Redundancies?

Multivalued dependencies

- A multivalued dependency (MVD) has the form \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \)
- \(X \rightarrow Y \) means that whenever two rows in \(R \) agree on all the attributes of \(X \), then we can swap their \(Y \) components and get two new rows that are also in \(R \)
MVD examples

Student (SID, CID, club)

- SID → CID

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 If X → Y, then X attr(R) → X → Y
- MVD augmentation:
 If X → Y and V ⊆ W, then XW → YV
- MVD transitivity:
 If X → Y and Y → Z, then X → Z → Y
- Replication (FD is MVD):
 If X → Y, then X → Y
- Coalescence:
 If X → Y and Z ⊆ Y and there is some W disjoint from Y such that W → Z, then X → Z

An elegant solution: chase

- Given a set of FD’s and MVD’s D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypothesis of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

In \(R(A, B, C, D)\), does \(A \rightarrow B\) and \(B \rightarrow C\) imply that \(A \rightarrow C\)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(A \rightarrow C)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(B \rightarrow C)</td>
</tr>
</tbody>
</table>

Another proof by chase

In \(R(A, B, C, D)\), does \(A \rightarrow B\) and \(B \rightarrow C\) imply that \(A \rightarrow C\)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(A \rightarrow C)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(B \rightarrow C)</td>
</tr>
</tbody>
</table>

In general, both new tuples and new equalities may be generated.

Counterexample by chase

In \(R(A, B, C, D)\), does \(A \rightarrow BC\) and \(CD \rightarrow B\) imply that \(A \rightarrow B\)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow BC)</td>
<td>(A \rightarrow BC)</td>
</tr>
</tbody>
</table>

Counterexample!
4NF

A relation \(R \) is in Fourth Normal Form (4NF) if
- For every non-trivial MVD \(X \rightarrow Y \) in \(R \), \(X \) is a superkey
- That is, all FD's and MVD's follow from "key \(\rightarrow \) other attributes" (i.e., no MVD's, and no FD's besides key functional dependencies)

4NF is stronger than BCNF
- Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey
- Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \) (\(Z \) contains attributes not in \(X \) or \(Y \))
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

<table>
<thead>
<tr>
<th>Student (SID, CID, club)</th>
<th>Enroll (SID, CID)</th>
<th>Join (SID, club)</th>
</tr>
</thead>
<tbody>
<tr>
<td>142 CPS116 ballet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142 CPS116 sumo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142 CPS114 ballet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123 CPS116 golf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4NF violation: \(SID \rightarrow CID \)
3NF, BCNF, 4NF, and beyond

<table>
<thead>
<tr>
<th>Anomaly/normal form</th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose FD's?</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Redundancy due to FD's</td>
<td>Possible</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy due to MVD's</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
</tr>
</tbody>
</table>

- Of historical interests
 - 1NF: All column values must be atomic
 - 2NF: Slightly more relaxed than 3NF

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!

- Philosophy behind 3NF:
 … But not at the expense of more expensive constraint enforcement!