Relational Database Design Theory
Part II

CPS 116
Introduction to Database Systems

Announcements (October 13)
- Midterm graded; sample solution available
- Please verify your grades on Blackboard
- Project milestone #1 due today

Review
- Functional dependencies
 - $X \rightarrow Y$: If two rows agree on X, they must agree on Y
 - A generalization of the key concept
- Non-key functional dependencies: a source of redundancy
 - Non-trivial $X \rightarrow Y$ where X is not a superkey
 - Called a BCNF violation
- BCNF decomposition: a method for removing redundancies
 - Given $R(X, Y, Z)$ and a BCNF violation $X \rightarrow Y$, decompose R into $R_1(X, Y)$ and $R_2(X, Z)$
 - A lossless join decomposition
- Schema in BCNF has no redundancy due to FD’s

Next
- 3NF (BCNF is too much)
- Multivalued dependencies: another source of redundancy
- 4NF (BCNF is not enough)

Motivation for 3NF
- $Address (street_address, city, state, zip)$
 - $street_address, city, state \rightarrow zip$
 - $zip \rightarrow city, state$
- Keys
 - \{street_address, city, state\}
 - \{street_address, zip\}
- BCNF?
 - Violation: $zip \rightarrow city, state$

To decompose or not to decompose
$Address_1 (zip, city, state)$
$Address_2 (street_address, zip)$
- FD’s in $Address_1$
 - $zip \rightarrow city, state$
- FD’s in $Address_2$
 - None!
- Hey, where is $street_address, city, state \rightarrow zip$?
 - Cannot check without joining $Address_1$ and $Address_2$ back together
- Problem: Some lossless join decomposition is not dependency-preserving
- Dilemma: Should we get rid of redundancy at the expense of making constraints harder to enforce?
3NF

- R is in Third Normal Form (3NF) if for every non-trivial FD X → A (where A is a single attribute), either
 - X is a superkey of R, or
 - A is a member of at least one key of R

- Intuitively, BCNF decomposition on X → A would “break” the key containing A

- So Address is already in 3NF

- Tradeoff:
 - Can enforce all original FD’s on individual decomposed relations
 - Might have some redundancy due to FD’s

BNCF = no redundancy?

- Student (SID, CID, club)
 - Suppose your classes have nothing to do with the clubs you join
 - FD’s?
 - None
 - BCNF?
 - Yes
 - Redundancies?
 - Tons!

Multivalued dependencies

- A multivalued dependency (MVD) has the form X → Y, where X and Y are sets of attributes in a relation R

- X → Y means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two new rows that are also in R

 \[
 \begin{array}{ccc}
 X & Y & Z \\
 1 & a & c \\
 2 & b & c \\
 3 & a & b \\
 4 & c & a \\
 \end{array}
 \]

 Must be in R too

MVD examples

- Student (SID, CID, club)
 - SID → CID
 - SID → club
 - Intuition: given SID, CID and club are “independent”
 - SID, CID → club
 - Trivial: LHS ∪ RHS = all attributes of R
 - SID, CID → SID
 - Trivial: LHS ⊇ RHS

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 - If X → Y, then X → attr(R) − X − Y
- MVD augmentation:
 - If X → Y and V ⊆ W, then XW → YV
- MVD transitivity:
 - If X → Y and Y → Z, then X → Z − Y
- Replication (FD is MVD):
 - If X → Y, then X → Y
 - Coalescence:
 - If X → Y and Z ⊆ Y and there is some W disjoint from Y such that W → Z, then X → Z

An elegant solution: chase

- Given a set of FD’s and MVD’s D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the hypothesis of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample
Proof by chase

- In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(A) (B) (C) (D)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(A) (B) (C) (D)</td>
</tr>
</tbody>
</table>

Another proof by chase

- In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(A) (B) (C) (D)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(A) (B) (C) (D)</td>
</tr>
</tbody>
</table>

Counterexample by chase

- In \(R(A, B, C, D) \), does \(A \rightarrow BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?

<table>
<thead>
<tr>
<th>Have</th>
<th>Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow BC)</td>
<td>(A) (B) (C) (D)</td>
</tr>
</tbody>
</table>

4NF

- A relation \(R \) is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD \(X \rightarrow Y \) in \(R \), \(X \) is a superkey
 - That is, all FD’s and MVD’s follow from “key \(\rightarrow \) other attributes” (i.e., no MVD’s, and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey
 - Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \) (\(Z \) contains attributes not in \(X \) or \(Y \))
 - Repeat until all relations are in 4NF

- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

- Student (\(SID, CID, club \))
 - 4NF violation: \(SID \rightarrow CID \)

- Enroll (\(SID, CID \))
 - 4NF

- Join (\(SID, club \))
 - 4NF
3NF, BCNF, 4NF, and beyond

<table>
<thead>
<tr>
<th>Anomaly/normal form</th>
<th>3NF</th>
<th>BCNF</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lose FD’s?</td>
<td>No</td>
<td>Possible</td>
<td>Possible</td>
</tr>
<tr>
<td>Redundancy due to FD’s</td>
<td>Possible</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Redundancy due to MVD’s</td>
<td>Possible</td>
<td>Possible</td>
<td>No</td>
</tr>
</tbody>
</table>

- Of historical interests
 - 1NF: All column values must be atomic
 - 2NF: Slightly more relaxed than 3NF

Summary

- Philosophy behind BCNF, 4NF:
 Data should depend on the key, the whole key, and nothing but the key!

- Philosophy behind 3NF:
 … But not at the expense of more expensive constraint enforcement!