Query Processing

CPS 116
Introduction to Database Systems

Announcements (November 10)

- Course project milestone #2 due today
- My office hours today start from 3pm

Overview

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
 - Implement all alternatives
 - Let the query optimizer choose at run-time

Notation

- Relations: \(R, S \)
- Tuples: \(r, s \)
- Number of tuples: \(|R|, |S| \)
- Number of disk blocks: \(B(R), B(S) \)
- Number of memory blocks available: \(M \)
- Cost metric
 - Number of I/O’s
 - Memory requirement

Table scan

- Scan table \(R \) and process the query
 - Selection over \(R \)
 - Projection of \(R \) without duplicate elimination
- I/O’s: \(B(R) \)
 - Trick for selection: stop early if it is a lookup by key
 - Memory requirement: 2 (+1 for double buffering)
 - Not counting the cost of writing the result out
 - Same for any algorithm!
 - Maybe not needed—results may be pipelined into another operator

Nested-loop join

- \(R \bowtie S \)
- For each block of \(R \), and for each \(r \) in the block:
 - For each block of \(S \), and for each \(s \) in the block:
 - Output \(rs \) if \(p \) evaluates to true over \(r \) and \(s \)
 - \(R \) is called the outer table; \(S \) is called the inner table
 - I/O’s: \(B(R) + |R| \cdot B(S) \)
 - Memory requirement: 3 (+1 for double buffering)
 - Improvement: block-based nested-loop join
 - For each block of \(R \), and for each block of \(S \):
 - For each \(r \) in the \(R \) block, and for each \(s \) in the \(S \) block: …
 - I/O’s: \(B(R) + B(R) \cdot B(S) \)
 - Memory requirement: same as before
More improvements of nested-loop join

- Stop early
 - If the key of the inner table is being matched
 - May reduce half of the I/O’s
- Make use of available memory
 - Stuff memory with as much of \(R \) as possible, stream \(S \) by, and join every \(S \) tuple with all \(R \) tuples in memory
 - I/O’s: \(B(R) + \left\lceil \frac{B(R)}{(M-2)} \right\rceil \cdot B(S) \)
 - Or, roughly: \(B(R) \cdot B(S) / M \)
- Which table would you pick as the outer?

External merge sort

Remember (internal-memory) merge sort?

Problem: sort \(R \), but \(R \) does not fit in memory

- Pass 0: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
 - There are \(\left\lceil \frac{B(R)}{M} \right\rceil \) level-0 sorted runs
- Pass \(i \): merge \((M-1)\) level-\((i-1)\) runs at a time, and write out a level-\(i \) run
 - \((M-1)\) memory blocks for input, 1 to buffer output
 - # of level-\(i \) runs = \(\left\lceil \frac{\# \text{ of level-} (i-1) \text{ runs}}{M-1} \right\rceil \)
- Final pass produces 1 sorted run

Example of external merge sort

- Input: 1, 7, 4, 5, 2, 8, 3, 6, 9
- Pass 0
 - 1, 7, 4 → 1, 4, 7
 - 5, 2, 8 → 2, 5, 8
 - 9, 6, 3 → 3, 6, 9
- Pass 1
 - 1, 4, 7 + 2, 5, 8 → 1, 2, 4, 5, 7, 8
 - 3, 6, 9
- Pass 2 (final)
 - 1, 2, 4, 5, 7, 8 + 3, 6, 9 → 1, 2, 3, 4, 5, 6, 7, 8, 9

Performance of external merge sort

- Number of passes: \(\left\lceil \frac{\log_{\frac{M-1}{M}} B(R)}{B(R)/M} \right\rceil + 1 \)
- I/O’s
 - Multiply by \(2 \cdot B(R) \): each pass reads the entire relation once and writes it once
 - Subtract \(B(R) \) for the final pass
 - Roughly, this is \(O(B(R) \cdot \log \frac{M}{B(R)}) \)
- Memory requirement: \(M \) (as much as possible)

Some tricks for sorting

- Double buffering
 - Allocate an additional block for each run
 - Trade-off: smaller fan-in (more passes)
- Blocked I/O
 - Instead of reading/writing one disk block at time, read/write a bunch (“cluster”)
 - More sequential I/O’s
 - Trade-off: larger cluster → smaller fan-in (more passes)

Sort-merge join

- \(R \bowtie_{A} S \)
- Sort \(R \) and \(S \) by their join attributes, and then merge \(r, s \) = the first tuples in sorted \(R \) and \(S \)
 - Repeat until one of \(R \) and \(S \) is exhausted:
 - If \(r.A > s.B \) then \(s = \) next tuple in \(S \)
 - else if \(r.A < s.B \) then \(r = \) next tuple in \(R \)
 - else output all matching tuples, and \(r, s = \) next in \(R \) and \(S \)
- I/O’s: sorting + 2 \(B(R) + 2 \ B(S) \)
 - In most cases (e.g., join of key and foreign key)
 - Worst case is \(B(R) \cdot B(S) \): everything joins
Example

\[
R: \\
\rightarrow r_1.A = 1 \\
\rightarrow r_2.A = 3 \\
\rightarrow r_3.A = 3 \\
\rightarrow r_4.A = 5 \\
\rightarrow r_5.A = 7 \\
\rightarrow r_6.A = 7 \\
\rightarrow r_7.A = 8
\]

\[
S: \\
\rightarrow s_1.B = 1 \\
\rightarrow s_2.B = 2 \\
\rightarrow s_3.B = 3 \\
\rightarrow s_4.B = 3 \\
\rightarrow s_5.B = 8
\]

\[R \bowtie_{R.A = S.B} S:\]

\[r_1.s_1 \]

\[r_2.s_3 \]

\[r_2.s_4 \]

\[r_3.s_3 \]

\[r_3.s_4 \]

\[r_7.s_5 \]

Optimization of SMJ

* Idea: combine join with the merge phase of merge sort
* Sort: produce sorted runs of size \(M \) for \(R \) and \(S \)
* Merge and join: merge the runs of \(R \), merge the runs of \(S \),
and merge-join the result streams as they are generated!

Disk

\[\rightarrow\]

Memory

\[\rightarrow\]

Sent runs

\[R \]

\[\rightarrow\]

Merge

Join

\[S \]

\[\rightarrow\]

Merge

\[\rightarrow\]

\[\rightarrow\]

Performance of two-pass SMJ

* I/O's: \(3 \cdot (B(R) + B(S)) \)
* Memory requirement
 * To be able to merge in one pass, we should have enough memory to accommodate one block from each run: \(M > B(R) / M + B(S) / M \)
 * \(M > \sqrt{B(R) + B(S)} \)

\[\rightarrow\]

Other sort-based algorithms

* Union (set), difference, intersection
 * More or less like SMJ
* Duplication elimination
 * External merge sort
 * Eliminate duplicates in sort and merge
* GROUP BY and aggregation
 * External merge sort
 * Produce partial aggregate values in each run
 * Combine partial aggregate values during merge
 * Partial aggregate values don't always work though
 * Examples: \(\text{SUM(DISTINCT ...)} \), \(\text{MEDIAN(...)} \)

Hash join

* \(R \bowtie_{R.A = S.B} S \)
* Main idea
 * Partition \(R \) and \(S \) by hashing their join attributes, and then consider corresponding partitions of \(R \) and \(S \)
 * If \(r.A \) and \(s.B \) get hashed to different partitions, they don’t join

\[\rightarrow\]

Partitioning phase

* Partition \(R \) and \(S \) according to the same hash function on their join attributes
Probing phase

- Read in each partition of \(R \), stream in the corresponding partition of \(S \), join
 - Typically build a hash table for the partition of \(R \)
 - Not the same hash function used for partition, of course!

\[\text{Disk} \quad \text{Memory} \]

\(R \) partitions

\(S \) partitions

For each \(S \) tuple, probe and join

Performance of hash join

- I/O's: \(3 \cdot (B(R) + B(S)) \)
- Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of \(R \):
 \[M - 1 \geq B(R) / (M - 1) \]
 - \(M > \sqrt{B(R)} \)
 - We can always pick \(R \) to be the smaller relation, so:
 \[M > \sqrt{\min(B(R), B(S))} \]

Hash join tricks

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - See the duality in multi-pass merge sort here?

Hash join versus SMJ

(Assuming two-pass)

- I/O's: same
- Memory requirement: hash join is lower
 - \(\sqrt{\min(B(R), B(S))} < \sqrt{B(R) + B(S)} \)
- Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if \(R \) and/or \(S \) are already sorted
 - SMJ wins if the result needs to be in sorted order

What about nested-loop join?

- May be best if many tuples join
 - Example: non-equality joins that are not very selective
- Necessary for black-box predicates
 - Example: \(\ldots \text{WHERE user_defined_pred}(R.A, S.B) \)

Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- GROUP BY and aggregation
 - Apply the hash functions to GROUP BY attributes
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
Duality of sort and hash

- Divide-and-conquer paradigm
 - Sorting: physical division, logical combination
 - Hashing: logical division, physical combination
- Handling very large inputs
 - Sorting: multi-level merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

Selection using index

- Equality predicate: $\sigma_A = v (R)$
 - Use an ISAM, B+-tree, or hash index on $R(A)$
- Range predicate: $\sigma_A > v (R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on $R(A)$
 - Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
 - Example: B+-tree index on $R(A, B)$
 - How about B+-tree index on $R(B, A)$?

Index versus table scan

- Situations where index clearly wins:
 - Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A (\sigma_A > v (R))$
 - Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

- BUT(!):
 - Consider $\sigma_A > v (R)$ and a secondary, non-clustered index on $R(A)$
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies $A > v$
 - Could happen even for equality predicates
 - I/O’s for index-based selection: lookup + 20% $|R|$
 - I/O’s for scan-based selection: $B(R)$
 - Table scan wins if a block contains more than 5 tuples

Index nested-loop join

- $R \bowtie_{R.A = S.B} S$
- Idea: use the value of $R.A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:
 - Use the index on $S(B)$ to retrieve s with $s.B = r.A$
- Output rs
- I/O’s: $B(R) + |R| \cdot$ (index lookup)
 - Typically, the cost of an index lookup is 2-4 I/O’s
 - Beats other join methods if $|R|$ is not too big
 - Better pick R to be the smaller relation
- Memory requirement: 2

Zig-zag join using ordered indexes

- $R \bowtie_{R.A = S.B} S$
- Idea: use the ordering provided by the indexes on $R(A)$ and $S(B)$ to eliminate the sorting step of sort-merge join
- Trick: use the larger key to probe the other index
 - Posibly skipping many keys that don’t match
Summary of tricks

- **Scan**
 - Selection, duplicate-preserving projection, nested-loop join

- **Sort**
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation

- **Hash**
 - Hash join, union (set), difference, intersection, duplicate elimination, GROUP BY and aggregation

- **Index**
 - Selection, index nested-loop join, zig-zag join